Metamath Proof Explorer


Theorem foun

Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016)

Ref Expression
Assertion foun F:AontoBG:ContoDAC=FG:AContoBD

Proof

Step Hyp Ref Expression
1 fofn F:AontoBFFnA
2 fofn G:ContoDGFnC
3 1 2 anim12i F:AontoBG:ContoDFFnAGFnC
4 fnun FFnAGFnCAC=FGFnAC
5 3 4 sylan F:AontoBG:ContoDAC=FGFnAC
6 rnun ranFG=ranFranG
7 forn F:AontoBranF=B
8 7 ad2antrr F:AontoBG:ContoDAC=ranF=B
9 forn G:ContoDranG=D
10 9 ad2antlr F:AontoBG:ContoDAC=ranG=D
11 8 10 uneq12d F:AontoBG:ContoDAC=ranFranG=BD
12 6 11 eqtrid F:AontoBG:ContoDAC=ranFG=BD
13 df-fo FG:AContoBDFGFnACranFG=BD
14 5 12 13 sylanbrc F:AontoBG:ContoDAC=FG:AContoBD