| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fofn |  |-  ( F : A -onto-> B -> F Fn A ) | 
						
							| 2 |  | fofn |  |-  ( G : C -onto-> D -> G Fn C ) | 
						
							| 3 | 1 2 | anim12i |  |-  ( ( F : A -onto-> B /\ G : C -onto-> D ) -> ( F Fn A /\ G Fn C ) ) | 
						
							| 4 |  | fnun |  |-  ( ( ( F Fn A /\ G Fn C ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) | 
						
							| 6 |  | rnun |  |-  ran ( F u. G ) = ( ran F u. ran G ) | 
						
							| 7 |  | forn |  |-  ( F : A -onto-> B -> ran F = B ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran F = B ) | 
						
							| 9 |  | forn |  |-  ( G : C -onto-> D -> ran G = D ) | 
						
							| 10 | 9 | ad2antlr |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran G = D ) | 
						
							| 11 | 8 10 | uneq12d |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( ran F u. ran G ) = ( B u. D ) ) | 
						
							| 12 | 6 11 | eqtrid |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran ( F u. G ) = ( B u. D ) ) | 
						
							| 13 |  | df-fo |  |-  ( ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) <-> ( ( F u. G ) Fn ( A u. C ) /\ ran ( F u. G ) = ( B u. D ) ) ) | 
						
							| 14 | 5 12 13 | sylanbrc |  |-  ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) ) |