Step |
Hyp |
Ref |
Expression |
1 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
2 |
|
df-fn |
|- ( G Fn B <-> ( Fun G /\ dom G = B ) ) |
3 |
|
ineq12 |
|- ( ( dom F = A /\ dom G = B ) -> ( dom F i^i dom G ) = ( A i^i B ) ) |
4 |
3
|
eqeq1d |
|- ( ( dom F = A /\ dom G = B ) -> ( ( dom F i^i dom G ) = (/) <-> ( A i^i B ) = (/) ) ) |
5 |
4
|
anbi2d |
|- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) <-> ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) ) ) |
6 |
|
funun |
|- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> Fun ( F u. G ) ) |
7 |
5 6
|
syl6bir |
|- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> Fun ( F u. G ) ) ) |
8 |
|
dmun |
|- dom ( F u. G ) = ( dom F u. dom G ) |
9 |
|
uneq12 |
|- ( ( dom F = A /\ dom G = B ) -> ( dom F u. dom G ) = ( A u. B ) ) |
10 |
8 9
|
eqtrid |
|- ( ( dom F = A /\ dom G = B ) -> dom ( F u. G ) = ( A u. B ) ) |
11 |
7 10
|
jctird |
|- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> ( Fun ( F u. G ) /\ dom ( F u. G ) = ( A u. B ) ) ) ) |
12 |
|
df-fn |
|- ( ( F u. G ) Fn ( A u. B ) <-> ( Fun ( F u. G ) /\ dom ( F u. G ) = ( A u. B ) ) ) |
13 |
11 12
|
syl6ibr |
|- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) ) |
14 |
13
|
expd |
|- ( ( dom F = A /\ dom G = B ) -> ( ( Fun F /\ Fun G ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) ) |
15 |
14
|
impcom |
|- ( ( ( Fun F /\ Fun G ) /\ ( dom F = A /\ dom G = B ) ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
16 |
15
|
an4s |
|- ( ( ( Fun F /\ dom F = A ) /\ ( Fun G /\ dom G = B ) ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
17 |
1 2 16
|
syl2anb |
|- ( ( F Fn A /\ G Fn B ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
18 |
17
|
imp |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) |