Metamath Proof Explorer


Theorem dihmeetcl

Description: Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihmeetcl.h H = LHyp K
dihmeetcl.i I = DIsoH K W
Assertion dihmeetcl K HL W H X ran I Y ran I X Y ran I

Proof

Step Hyp Ref Expression
1 dihmeetcl.h H = LHyp K
2 dihmeetcl.i I = DIsoH K W
3 1 2 dihcnvid2 K HL W H X ran I I I -1 X = X
4 3 adantrr K HL W H X ran I Y ran I I I -1 X = X
5 1 2 dihcnvid2 K HL W H Y ran I I I -1 Y = Y
6 5 adantrl K HL W H X ran I Y ran I I I -1 Y = Y
7 4 6 ineq12d K HL W H X ran I Y ran I I I -1 X I I -1 Y = X Y
8 simpl K HL W H X ran I Y ran I K HL W H
9 eqid Base K = Base K
10 9 1 2 dihcnvcl K HL W H X ran I I -1 X Base K
11 10 adantrr K HL W H X ran I Y ran I I -1 X Base K
12 9 1 2 dihcnvcl K HL W H Y ran I I -1 Y Base K
13 12 adantrl K HL W H X ran I Y ran I I -1 Y Base K
14 eqid meet K = meet K
15 9 14 1 2 dihmeet K HL W H I -1 X Base K I -1 Y Base K I I -1 X meet K I -1 Y = I I -1 X I I -1 Y
16 8 11 13 15 syl3anc K HL W H X ran I Y ran I I I -1 X meet K I -1 Y = I I -1 X I I -1 Y
17 hllat K HL K Lat
18 17 ad2antrr K HL W H X ran I Y ran I K Lat
19 9 14 latmcl K Lat I -1 X Base K I -1 Y Base K I -1 X meet K I -1 Y Base K
20 18 11 13 19 syl3anc K HL W H X ran I Y ran I I -1 X meet K I -1 Y Base K
21 9 1 2 dihcl K HL W H I -1 X meet K I -1 Y Base K I I -1 X meet K I -1 Y ran I
22 20 21 syldan K HL W H X ran I Y ran I I I -1 X meet K I -1 Y ran I
23 16 22 eqeltrrd K HL W H X ran I Y ran I I I -1 X I I -1 Y ran I
24 7 23 eqeltrrd K HL W H X ran I Y ran I X Y ran I