Metamath Proof Explorer


Theorem dihmeetcl

Description: Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihmeetcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihmeetcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝑋𝑌 ) ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dihmeetcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihmeetcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 1 2 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
4 3 adantrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
5 1 2 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
6 5 adantrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
7 4 6 ineq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) = ( 𝑋𝑌 ) )
8 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 1 2 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
11 10 adantrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
12 9 1 2 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
13 12 adantrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
14 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
15 9 14 1 2 dihmeet ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ) = ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) )
16 8 11 13 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ) = ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) )
17 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
18 17 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → 𝐾 ∈ Lat )
19 9 14 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ∈ ( Base ‘ 𝐾 ) )
20 18 11 13 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ∈ ( Base ‘ 𝐾 ) )
21 9 1 2 dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ) ∈ ran 𝐼 )
22 20 21 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( meet ‘ 𝐾 ) ( 𝐼𝑌 ) ) ) ∈ ran 𝐼 )
23 16 22 eqeltrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) ∈ ran 𝐼 )
24 7 23 eqeltrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝑋𝑌 ) ∈ ran 𝐼 )