| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihmeetcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 4 |
3
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 5 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
| 6 |
5
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
| 7 |
4 6
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
| 8 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 10 |
9 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
10
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
9 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
12
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 15 |
9 14 1 2
|
dihmeet |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
| 16 |
8 11 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
| 17 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → 𝐾 ∈ Lat ) |
| 19 |
9 14
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
18 11 13 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
9 1 2
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
| 22 |
20 21
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
| 23 |
16 22
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
| 24 |
7 23
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) |