Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihmeetcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
4 |
3
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
5 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
6 |
5
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
7 |
4 6
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
8 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
10
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
12 |
9 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
12
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
15 |
9 14 1 2
|
dihmeet |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
16 |
8 11 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
17 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → 𝐾 ∈ Lat ) |
19 |
9 14
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
18 11 13 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
9 1 2
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
22 |
20 21
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
23 |
16 22
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ∈ ran 𝐼 ) |
24 |
7 23
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) |