Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeet2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
2 |
|
dihmeet2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihmeet2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihmeet2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
dihmeet2.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
6 |
|
dihmeet2.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
7 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
8 |
4 5 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
9 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
10 |
4 6 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
11 |
8 10
|
ineq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
4 5 13
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
12 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
4 6 15
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
12 1 2 3
|
dihmeet |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
18 |
4 14 16 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
19 |
2 3
|
dihmeetcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼 ) ) → ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) |
20 |
4 5 6 19
|
syl12anc |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) |
21 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
22 |
4 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
23 |
11 18 22
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
24 |
12 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∩ 𝑌 ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
4 20 24
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
4
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
27 |
26
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
28 |
12 1
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
27 14 16 28
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
12 2 3
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
31 |
4 25 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ↔ ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) |
32 |
23 31
|
mpbid |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ◡ 𝐼 ‘ 𝑋 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ) ) |