| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihmeet2.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 2 |  | dihmeet2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | dihmeet2.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dihmeet2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 5 |  | dihmeet2.x | ⊢ ( 𝜑  →  𝑋  ∈  ran  𝐼 ) | 
						
							| 6 |  | dihmeet2.y | ⊢ ( 𝜑  →  𝑌  ∈  ran  𝐼 ) | 
						
							| 7 | 2 3 | dihcnvid2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  ran  𝐼 )  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 9 | 2 3 | dihcnvid2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  ran  𝐼 )  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 10 | 4 6 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 11 | 8 10 | ineq12d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) )  ∩  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) )  =  ( 𝑋  ∩  𝑌 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 13 | 12 2 3 | dihcnvcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  ran  𝐼 )  →  ( ◡ 𝐼 ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 12 2 3 | dihcnvcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  ran  𝐼 )  →  ( ◡ 𝐼 ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 4 6 15 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 12 1 2 3 | dihmeet | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ◡ 𝐼 ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ◡ 𝐼 ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) )  =  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) )  ∩  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 18 | 4 14 16 17 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) )  =  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) )  ∩  ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 19 | 2 3 | dihmeetcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  ran  𝐼  ∧  𝑌  ∈  ran  𝐼 ) )  →  ( 𝑋  ∩  𝑌 )  ∈  ran  𝐼 ) | 
						
							| 20 | 4 5 6 19 | syl12anc | ⊢ ( 𝜑  →  ( 𝑋  ∩  𝑌 )  ∈  ran  𝐼 ) | 
						
							| 21 | 2 3 | dihcnvid2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∩  𝑌 )  ∈  ran  𝐼 )  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) ) )  =  ( 𝑋  ∩  𝑌 ) ) | 
						
							| 22 | 4 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) ) )  =  ( 𝑋  ∩  𝑌 ) ) | 
						
							| 23 | 11 18 22 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) ) )  =  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 24 | 12 2 3 | dihcnvcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∩  𝑌 )  ∈  ran  𝐼 )  →  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 4 20 24 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 26 | 4 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  HL ) | 
						
							| 27 | 26 | hllatd | ⊢ ( 𝜑  →  𝐾  ∈  Lat ) | 
						
							| 28 | 12 1 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ◡ 𝐼 ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ◡ 𝐼 ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 29 | 27 14 16 28 | syl3anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 12 2 3 | dih11 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) ) )  =  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) )  ↔  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  =  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 31 | 4 25 29 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) ) )  =  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) )  ↔  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  =  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 32 | 23 31 | mpbid | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑋  ∩  𝑌 ) )  =  ( ( ◡ 𝐼 ‘ 𝑋 )  ∧  ( ◡ 𝐼 ‘ 𝑌 ) ) ) |