Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeet2.m |
|- ./\ = ( meet ` K ) |
2 |
|
dihmeet2.h |
|- H = ( LHyp ` K ) |
3 |
|
dihmeet2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dihmeet2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
5 |
|
dihmeet2.x |
|- ( ph -> X e. ran I ) |
6 |
|
dihmeet2.y |
|- ( ph -> Y e. ran I ) |
7 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
8 |
4 5 7
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` X ) ) = X ) |
9 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( I ` ( `' I ` Y ) ) = Y ) |
10 |
4 6 9
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` Y ) ) = Y ) |
11 |
8 10
|
ineq12d |
|- ( ph -> ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) = ( X i^i Y ) ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
14 |
4 5 13
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
15 |
12 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
16 |
4 6 15
|
syl2anc |
|- ( ph -> ( `' I ` Y ) e. ( Base ` K ) ) |
17 |
12 1 2 3
|
dihmeet |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) |
18 |
4 14 16 17
|
syl3anc |
|- ( ph -> ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) |
19 |
2 3
|
dihmeetcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( X i^i Y ) e. ran I ) |
20 |
4 5 6 19
|
syl12anc |
|- ( ph -> ( X i^i Y ) e. ran I ) |
21 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X i^i Y ) e. ran I ) -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( X i^i Y ) ) |
22 |
4 20 21
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( X i^i Y ) ) |
23 |
11 18 22
|
3eqtr4rd |
|- ( ph -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) |
24 |
12 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X i^i Y ) e. ran I ) -> ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) ) |
25 |
4 20 24
|
syl2anc |
|- ( ph -> ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) ) |
26 |
4
|
simpld |
|- ( ph -> K e. HL ) |
27 |
26
|
hllatd |
|- ( ph -> K e. Lat ) |
28 |
12 1
|
latmcl |
|- ( ( K e. Lat /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) |
29 |
27 14 16 28
|
syl3anc |
|- ( ph -> ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) |
30 |
12 2 3
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) /\ ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) -> ( ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) <-> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) |
31 |
4 25 29 30
|
syl3anc |
|- ( ph -> ( ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) <-> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) |
32 |
23 31
|
mpbid |
|- ( ph -> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) |