| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihmeet2.m |  |-  ./\ = ( meet ` K ) | 
						
							| 2 |  | dihmeet2.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | dihmeet2.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 4 |  | dihmeet2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 5 |  | dihmeet2.x |  |-  ( ph -> X e. ran I ) | 
						
							| 6 |  | dihmeet2.y |  |-  ( ph -> Y e. ran I ) | 
						
							| 7 | 2 3 | dihcnvid2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) | 
						
							| 8 | 4 5 7 | syl2anc |  |-  ( ph -> ( I ` ( `' I ` X ) ) = X ) | 
						
							| 9 | 2 3 | dihcnvid2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( I ` ( `' I ` Y ) ) = Y ) | 
						
							| 10 | 4 6 9 | syl2anc |  |-  ( ph -> ( I ` ( `' I ` Y ) ) = Y ) | 
						
							| 11 | 8 10 | ineq12d |  |-  ( ph -> ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) = ( X i^i Y ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 13 | 12 2 3 | dihcnvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) | 
						
							| 14 | 4 5 13 | syl2anc |  |-  ( ph -> ( `' I ` X ) e. ( Base ` K ) ) | 
						
							| 15 | 12 2 3 | dihcnvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) | 
						
							| 16 | 4 6 15 | syl2anc |  |-  ( ph -> ( `' I ` Y ) e. ( Base ` K ) ) | 
						
							| 17 | 12 1 2 3 | dihmeet |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) | 
						
							| 18 | 4 14 16 17 | syl3anc |  |-  ( ph -> ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) | 
						
							| 19 | 2 3 | dihmeetcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( X i^i Y ) e. ran I ) | 
						
							| 20 | 4 5 6 19 | syl12anc |  |-  ( ph -> ( X i^i Y ) e. ran I ) | 
						
							| 21 | 2 3 | dihcnvid2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X i^i Y ) e. ran I ) -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( X i^i Y ) ) | 
						
							| 22 | 4 20 21 | syl2anc |  |-  ( ph -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( X i^i Y ) ) | 
						
							| 23 | 11 18 22 | 3eqtr4rd |  |-  ( ph -> ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) | 
						
							| 24 | 12 2 3 | dihcnvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X i^i Y ) e. ran I ) -> ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) ) | 
						
							| 25 | 4 20 24 | syl2anc |  |-  ( ph -> ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) ) | 
						
							| 26 | 4 | simpld |  |-  ( ph -> K e. HL ) | 
						
							| 27 | 26 | hllatd |  |-  ( ph -> K e. Lat ) | 
						
							| 28 | 12 1 | latmcl |  |-  ( ( K e. Lat /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) | 
						
							| 29 | 27 14 16 28 | syl3anc |  |-  ( ph -> ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) | 
						
							| 30 | 12 2 3 | dih11 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` ( X i^i Y ) ) e. ( Base ` K ) /\ ( ( `' I ` X ) ./\ ( `' I ` Y ) ) e. ( Base ` K ) ) -> ( ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) <-> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) | 
						
							| 31 | 4 25 29 30 | syl3anc |  |-  ( ph -> ( ( I ` ( `' I ` ( X i^i Y ) ) ) = ( I ` ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) <-> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) ) | 
						
							| 32 | 23 31 | mpbid |  |-  ( ph -> ( `' I ` ( X i^i Y ) ) = ( ( `' I ` X ) ./\ ( `' I ` Y ) ) ) |