| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetcl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihmeetcl.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
| 4 |
3
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( I ` ( `' I ` X ) ) = X ) |
| 5 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( I ` ( `' I ` Y ) ) = Y ) |
| 6 |
5
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( I ` ( `' I ` Y ) ) = Y ) |
| 7 |
4 6
|
ineq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) = ( X i^i Y ) ) |
| 8 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 11 |
10
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 12 |
9 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 13 |
12
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 14 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 15 |
9 14 1 2
|
dihmeet |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( I ` ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) |
| 16 |
8 11 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( I ` ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) ) = ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) ) |
| 17 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> K e. Lat ) |
| 19 |
9 14
|
latmcl |
|- ( ( K e. Lat /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) e. ( Base ` K ) ) |
| 20 |
18 11 13 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) e. ( Base ` K ) ) |
| 21 |
9 1 2
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) e. ( Base ` K ) ) -> ( I ` ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) ) e. ran I ) |
| 22 |
20 21
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( I ` ( ( `' I ` X ) ( meet ` K ) ( `' I ` Y ) ) ) e. ran I ) |
| 23 |
16 22
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( ( I ` ( `' I ` X ) ) i^i ( I ` ( `' I ` Y ) ) ) e. ran I ) |
| 24 |
7 23
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. ran I /\ Y e. ran I ) ) -> ( X i^i Y ) e. ran I ) |