| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihintcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihintcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 4 |
3 1 2
|
dihfn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn ( Base ‘ 𝐾 ) ) |
| 5 |
3 1 2
|
dihdm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = ( Base ‘ 𝐾 ) ) |
| 6 |
5
|
fneq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 Fn dom 𝐼 ↔ 𝐼 Fn ( Base ‘ 𝐾 ) ) ) |
| 7 |
4 6
|
mpbird |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom 𝐼 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝐼 Fn dom 𝐼 ) |
| 9 |
|
cnvimass |
⊢ ( ◡ 𝐼 “ 𝑆 ) ⊆ dom 𝐼 |
| 10 |
|
fnssres |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ ( ◡ 𝐼 “ 𝑆 ) ⊆ dom 𝐼 ) → ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) Fn ( ◡ 𝐼 “ 𝑆 ) ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) Fn ( ◡ 𝐼 “ 𝑆 ) ) |
| 12 |
|
fniinfv |
⊢ ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) Fn ( ◡ 𝐼 “ 𝑆 ) → ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) = ∩ ran ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) = ∩ ran ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ) |
| 14 |
|
df-ima |
⊢ ( 𝐼 “ ( ◡ 𝐼 “ 𝑆 ) ) = ran ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) |
| 15 |
4
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝐼 Fn ( Base ‘ 𝐾 ) ) |
| 16 |
|
dffn4 |
⊢ ( 𝐼 Fn ( Base ‘ 𝐾 ) ↔ 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼 ) |
| 17 |
15 16
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼 ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ⊆ ran 𝐼 ) |
| 19 |
|
foimacnv |
⊢ ( ( 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼 ∧ 𝑆 ⊆ ran 𝐼 ) → ( 𝐼 “ ( ◡ 𝐼 “ 𝑆 ) ) = 𝑆 ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 “ ( ◡ 𝐼 “ 𝑆 ) ) = 𝑆 ) |
| 21 |
14 20
|
eqtr3id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ran ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) = 𝑆 ) |
| 22 |
21
|
inteqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∩ ran ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) = ∩ 𝑆 ) |
| 23 |
13 22
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) = ∩ 𝑆 ) |
| 24 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 25 |
5
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → dom 𝐼 = ( Base ‘ 𝐾 ) ) |
| 26 |
9 25
|
sseqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( ◡ 𝐼 “ 𝑆 ) ⊆ ( Base ‘ 𝐾 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ ) |
| 28 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑆 ) |
| 29 |
27 28
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∃ 𝑦 𝑦 ∈ 𝑆 ) |
| 30 |
18
|
sselda |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ran 𝐼 ) |
| 31 |
25
|
fneq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 Fn dom 𝐼 ↔ 𝐼 Fn ( Base ‘ 𝐾 ) ) ) |
| 32 |
15 31
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝐼 Fn dom 𝐼 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝐼 Fn dom 𝐼 ) |
| 34 |
|
fvelrnb |
⊢ ( 𝐼 Fn dom 𝐼 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝑦 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝑦 ) ) |
| 36 |
30 35
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝑦 ) |
| 37 |
|
fnfun |
⊢ ( 𝐼 Fn ( Base ‘ 𝐾 ) → Fun 𝐼 ) |
| 38 |
15 37
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → Fun 𝐼 ) |
| 39 |
|
fvimacnv |
⊢ ( ( Fun 𝐼 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ 𝑥 ∈ ( ◡ 𝐼 “ 𝑆 ) ) ) |
| 40 |
38 39
|
sylan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ 𝑥 ∈ ( ◡ 𝐼 “ 𝑆 ) ) ) |
| 41 |
|
ne0i |
⊢ ( 𝑥 ∈ ( ◡ 𝐼 “ 𝑆 ) → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) |
| 42 |
40 41
|
biimtrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) |
| 43 |
42
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) ) |
| 44 |
|
eleq1 |
⊢ ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) |
| 45 |
44
|
biimprd |
⊢ ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( 𝑦 ∈ 𝑆 → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 46 |
45
|
imim1d |
⊢ ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑆 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) ) |
| 47 |
43 46
|
syl9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( 𝑥 ∈ dom 𝐼 → ( 𝑦 ∈ 𝑆 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) ) ) |
| 48 |
47
|
com24 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑆 → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) ) |
| 50 |
49
|
rexlimdv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) |
| 51 |
36 50
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) |
| 52 |
29 51
|
exlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) |
| 53 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 54 |
3 53 1 2
|
dihglb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 “ 𝑆 ) ⊆ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 “ 𝑆 ) ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ) = ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( 𝐼 ‘ 𝑦 ) ) |
| 55 |
24 26 52 54
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ) = ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( 𝐼 ‘ 𝑦 ) ) |
| 56 |
|
fvres |
⊢ ( 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) → ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) |
| 57 |
56
|
iineq2i |
⊢ ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) = ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( 𝐼 ‘ 𝑦 ) |
| 58 |
55 57
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ) = ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) ) |
| 59 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → 𝐾 ∈ CLat ) |
| 61 |
3 53
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ ( ◡ 𝐼 “ 𝑆 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 62 |
60 26 61
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 63 |
3 1 2
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ) ∈ ran 𝐼 ) |
| 64 |
62 63
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( ◡ 𝐼 “ 𝑆 ) ) ) ∈ ran 𝐼 ) |
| 65 |
58 64
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∩ 𝑦 ∈ ( ◡ 𝐼 “ 𝑆 ) ( ( 𝐼 ↾ ( ◡ 𝐼 “ 𝑆 ) ) ‘ 𝑦 ) ∈ ran 𝐼 ) |
| 66 |
23 65
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅ ) ) → ∩ 𝑆 ∈ ran 𝐼 ) |