Metamath Proof Explorer


Theorem dihintcl

Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dihintcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dihintcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihintcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑆 ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dihintcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihintcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 3 1 2 dihfn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn ( Base ‘ 𝐾 ) )
5 3 1 2 dihdm ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → dom 𝐼 = ( Base ‘ 𝐾 ) )
6 5 fneq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 Fn dom 𝐼𝐼 Fn ( Base ‘ 𝐾 ) ) )
7 4 6 mpbird ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn dom 𝐼 )
8 7 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝐼 Fn dom 𝐼 )
9 cnvimass ( 𝐼𝑆 ) ⊆ dom 𝐼
10 fnssres ( ( 𝐼 Fn dom 𝐼 ∧ ( 𝐼𝑆 ) ⊆ dom 𝐼 ) → ( 𝐼 ↾ ( 𝐼𝑆 ) ) Fn ( 𝐼𝑆 ) )
11 8 9 10 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 ↾ ( 𝐼𝑆 ) ) Fn ( 𝐼𝑆 ) )
12 fniinfv ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) Fn ( 𝐼𝑆 ) → 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) = ran ( 𝐼 ↾ ( 𝐼𝑆 ) ) )
13 11 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) = ran ( 𝐼 ↾ ( 𝐼𝑆 ) ) )
14 df-ima ( 𝐼 “ ( 𝐼𝑆 ) ) = ran ( 𝐼 ↾ ( 𝐼𝑆 ) )
15 4 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝐼 Fn ( Base ‘ 𝐾 ) )
16 dffn4 ( 𝐼 Fn ( Base ‘ 𝐾 ) ↔ 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼 )
17 15 16 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼 )
18 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑆 ⊆ ran 𝐼 )
19 foimacnv ( ( 𝐼 : ( Base ‘ 𝐾 ) –onto→ ran 𝐼𝑆 ⊆ ran 𝐼 ) → ( 𝐼 “ ( 𝐼𝑆 ) ) = 𝑆 )
20 17 18 19 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 “ ( 𝐼𝑆 ) ) = 𝑆 )
21 14 20 eqtr3id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ran ( 𝐼 ↾ ( 𝐼𝑆 ) ) = 𝑆 )
22 21 inteqd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ran ( 𝐼 ↾ ( 𝐼𝑆 ) ) = 𝑆 )
23 13 22 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) = 𝑆 )
24 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
25 5 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → dom 𝐼 = ( Base ‘ 𝐾 ) )
26 9 25 sseqtrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼𝑆 ) ⊆ ( Base ‘ 𝐾 ) )
27 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ )
28 n0 ( 𝑆 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑆 )
29 27 28 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ∃ 𝑦 𝑦𝑆 )
30 18 sselda ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → 𝑦 ∈ ran 𝐼 )
31 25 fneq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 Fn dom 𝐼𝐼 Fn ( Base ‘ 𝐾 ) ) )
32 15 31 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝐼 Fn dom 𝐼 )
33 32 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → 𝐼 Fn dom 𝐼 )
34 fvelrnb ( 𝐼 Fn dom 𝐼 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝑦 ) )
35 33 34 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝑦 ) )
36 30 35 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → ∃ 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝑦 )
37 fnfun ( 𝐼 Fn ( Base ‘ 𝐾 ) → Fun 𝐼 )
38 15 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → Fun 𝐼 )
39 fvimacnv ( ( Fun 𝐼𝑥 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝑆𝑥 ∈ ( 𝐼𝑆 ) ) )
40 38 39 sylan ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝑆𝑥 ∈ ( 𝐼𝑆 ) ) )
41 ne0i ( 𝑥 ∈ ( 𝐼𝑆 ) → ( 𝐼𝑆 ) ≠ ∅ )
42 40 41 syl6bi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝑆 → ( 𝐼𝑆 ) ≠ ∅ ) )
43 42 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼𝑥 ) ∈ 𝑆 → ( 𝐼𝑆 ) ≠ ∅ ) ) )
44 eleq1 ( ( 𝐼𝑥 ) = 𝑦 → ( ( 𝐼𝑥 ) ∈ 𝑆𝑦𝑆 ) )
45 44 biimprd ( ( 𝐼𝑥 ) = 𝑦 → ( 𝑦𝑆 → ( 𝐼𝑥 ) ∈ 𝑆 ) )
46 45 imim1d ( ( 𝐼𝑥 ) = 𝑦 → ( ( ( 𝐼𝑥 ) ∈ 𝑆 → ( 𝐼𝑆 ) ≠ ∅ ) → ( 𝑦𝑆 → ( 𝐼𝑆 ) ≠ ∅ ) ) )
47 43 46 syl9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( ( 𝐼𝑥 ) = 𝑦 → ( 𝑥 ∈ dom 𝐼 → ( 𝑦𝑆 → ( 𝐼𝑆 ) ≠ ∅ ) ) ) )
48 47 com24 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝑦𝑆 → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼𝑥 ) = 𝑦 → ( 𝐼𝑆 ) ≠ ∅ ) ) ) )
49 48 imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → ( 𝑥 ∈ dom 𝐼 → ( ( 𝐼𝑥 ) = 𝑦 → ( 𝐼𝑆 ) ≠ ∅ ) ) )
50 49 rexlimdv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝑦 → ( 𝐼𝑆 ) ≠ ∅ ) )
51 36 50 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) ∧ 𝑦𝑆 ) → ( 𝐼𝑆 ) ≠ ∅ )
52 29 51 exlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼𝑆 ) ≠ ∅ )
53 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
54 3 53 1 2 dihglb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑆 ) ⊆ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑆 ) ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ) = 𝑦 ∈ ( 𝐼𝑆 ) ( 𝐼𝑦 ) )
55 24 26 52 54 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ) = 𝑦 ∈ ( 𝐼𝑆 ) ( 𝐼𝑦 ) )
56 fvres ( 𝑦 ∈ ( 𝐼𝑆 ) → ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) = ( 𝐼𝑦 ) )
57 56 iineq2i 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) = 𝑦 ∈ ( 𝐼𝑆 ) ( 𝐼𝑦 )
58 55 57 eqtr4di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ) = 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) )
59 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
60 59 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝐾 ∈ CLat )
61 3 53 clatglbcl ( ( 𝐾 ∈ CLat ∧ ( 𝐼𝑆 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
62 60 26 61 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
63 3 1 2 dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ) ∈ ran 𝐼 )
64 62 63 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ ( 𝐼𝑆 ) ) ) ∈ ran 𝐼 )
65 58 64 eqeltrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑦 ∈ ( 𝐼𝑆 ) ( ( 𝐼 ↾ ( 𝐼𝑆 ) ) ‘ 𝑦 ) ∈ ran 𝐼 )
66 23 65 eqeltrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆 ⊆ ran 𝐼𝑆 ≠ ∅ ) ) → 𝑆 ∈ ran 𝐼 )