Step |
Hyp |
Ref |
Expression |
1 |
|
dihintcl.h |
|- H = ( LHyp ` K ) |
2 |
|
dihintcl.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
4 |
3 1 2
|
dihfn |
|- ( ( K e. HL /\ W e. H ) -> I Fn ( Base ` K ) ) |
5 |
3 1 2
|
dihdm |
|- ( ( K e. HL /\ W e. H ) -> dom I = ( Base ` K ) ) |
6 |
5
|
fneq2d |
|- ( ( K e. HL /\ W e. H ) -> ( I Fn dom I <-> I Fn ( Base ` K ) ) ) |
7 |
4 6
|
mpbird |
|- ( ( K e. HL /\ W e. H ) -> I Fn dom I ) |
8 |
7
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn dom I ) |
9 |
|
cnvimass |
|- ( `' I " S ) C_ dom I |
10 |
|
fnssres |
|- ( ( I Fn dom I /\ ( `' I " S ) C_ dom I ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) ) |
11 |
8 9 10
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) ) |
12 |
|
fniinfv |
|- ( ( I |` ( `' I " S ) ) Fn ( `' I " S ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) ) |
13 |
11 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) ) |
14 |
|
df-ima |
|- ( I " ( `' I " S ) ) = ran ( I |` ( `' I " S ) ) |
15 |
4
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn ( Base ` K ) ) |
16 |
|
dffn4 |
|- ( I Fn ( Base ` K ) <-> I : ( Base ` K ) -onto-> ran I ) |
17 |
15 16
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I : ( Base ` K ) -onto-> ran I ) |
18 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S C_ ran I ) |
19 |
|
foimacnv |
|- ( ( I : ( Base ` K ) -onto-> ran I /\ S C_ ran I ) -> ( I " ( `' I " S ) ) = S ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I " ( `' I " S ) ) = S ) |
21 |
14 20
|
eqtr3id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ran ( I |` ( `' I " S ) ) = S ) |
22 |
21
|
inteqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| ran ( I |` ( `' I " S ) ) = |^| S ) |
23 |
13 22
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| S ) |
24 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( K e. HL /\ W e. H ) ) |
25 |
5
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> dom I = ( Base ` K ) ) |
26 |
9 25
|
sseqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ ( Base ` K ) ) |
27 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S =/= (/) ) |
28 |
|
n0 |
|- ( S =/= (/) <-> E. y y e. S ) |
29 |
27 28
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> E. y y e. S ) |
30 |
18
|
sselda |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> y e. ran I ) |
31 |
25
|
fneq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I Fn dom I <-> I Fn ( Base ` K ) ) ) |
32 |
15 31
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn dom I ) |
33 |
32
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> I Fn dom I ) |
34 |
|
fvelrnb |
|- ( I Fn dom I -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) ) |
35 |
33 34
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) ) |
36 |
30 35
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> E. x e. dom I ( I ` x ) = y ) |
37 |
|
fnfun |
|- ( I Fn ( Base ` K ) -> Fun I ) |
38 |
15 37
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> Fun I ) |
39 |
|
fvimacnv |
|- ( ( Fun I /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) ) |
40 |
38 39
|
sylan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) ) |
41 |
|
ne0i |
|- ( x e. ( `' I " S ) -> ( `' I " S ) =/= (/) ) |
42 |
40 41
|
syl6bi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) ) |
43 |
42
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( x e. dom I -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) ) ) |
44 |
|
eleq1 |
|- ( ( I ` x ) = y -> ( ( I ` x ) e. S <-> y e. S ) ) |
45 |
44
|
biimprd |
|- ( ( I ` x ) = y -> ( y e. S -> ( I ` x ) e. S ) ) |
46 |
45
|
imim1d |
|- ( ( I ` x ) = y -> ( ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) -> ( y e. S -> ( `' I " S ) =/= (/) ) ) ) |
47 |
43 46
|
syl9 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( I ` x ) = y -> ( x e. dom I -> ( y e. S -> ( `' I " S ) =/= (/) ) ) ) ) |
48 |
47
|
com24 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( y e. S -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) ) ) |
49 |
48
|
imp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) ) |
50 |
49
|
rexlimdv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( E. x e. dom I ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) |
51 |
36 50
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( `' I " S ) =/= (/) ) |
52 |
29 51
|
exlimddv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) =/= (/) ) |
53 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
54 |
3 53 1 2
|
dihglb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I " S ) C_ ( Base ` K ) /\ ( `' I " S ) =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) ) |
55 |
24 26 52 54
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) ) |
56 |
|
fvres |
|- ( y e. ( `' I " S ) -> ( ( I |` ( `' I " S ) ) ` y ) = ( I ` y ) ) |
57 |
56
|
iineq2i |
|- |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^|_ y e. ( `' I " S ) ( I ` y ) |
58 |
55 57
|
eqtr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) ) |
59 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
60 |
59
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> K e. CLat ) |
61 |
3 53
|
clatglbcl |
|- ( ( K e. CLat /\ ( `' I " S ) C_ ( Base ` K ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) |
62 |
60 26 61
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) |
63 |
3 1 2
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I ) |
64 |
62 63
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I ) |
65 |
58 64
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) e. ran I ) |
66 |
23 65
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| S e. ran I ) |