Metamath Proof Explorer


Theorem dihintcl

Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dihintcl.h
|- H = ( LHyp ` K )
dihintcl.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihintcl
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| S e. ran I )

Proof

Step Hyp Ref Expression
1 dihintcl.h
 |-  H = ( LHyp ` K )
2 dihintcl.i
 |-  I = ( ( DIsoH ` K ) ` W )
3 eqid
 |-  ( Base ` K ) = ( Base ` K )
4 3 1 2 dihfn
 |-  ( ( K e. HL /\ W e. H ) -> I Fn ( Base ` K ) )
5 3 1 2 dihdm
 |-  ( ( K e. HL /\ W e. H ) -> dom I = ( Base ` K ) )
6 5 fneq2d
 |-  ( ( K e. HL /\ W e. H ) -> ( I Fn dom I <-> I Fn ( Base ` K ) ) )
7 4 6 mpbird
 |-  ( ( K e. HL /\ W e. H ) -> I Fn dom I )
8 7 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn dom I )
9 cnvimass
 |-  ( `' I " S ) C_ dom I
10 fnssres
 |-  ( ( I Fn dom I /\ ( `' I " S ) C_ dom I ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) )
11 8 9 10 sylancl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) )
12 fniinfv
 |-  ( ( I |` ( `' I " S ) ) Fn ( `' I " S ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) )
13 11 12 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) )
14 df-ima
 |-  ( I " ( `' I " S ) ) = ran ( I |` ( `' I " S ) )
15 4 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn ( Base ` K ) )
16 dffn4
 |-  ( I Fn ( Base ` K ) <-> I : ( Base ` K ) -onto-> ran I )
17 15 16 sylib
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I : ( Base ` K ) -onto-> ran I )
18 simprl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S C_ ran I )
19 foimacnv
 |-  ( ( I : ( Base ` K ) -onto-> ran I /\ S C_ ran I ) -> ( I " ( `' I " S ) ) = S )
20 17 18 19 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I " ( `' I " S ) ) = S )
21 14 20 eqtr3id
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ran ( I |` ( `' I " S ) ) = S )
22 21 inteqd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| ran ( I |` ( `' I " S ) ) = |^| S )
23 13 22 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| S )
24 simpl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( K e. HL /\ W e. H ) )
25 5 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> dom I = ( Base ` K ) )
26 9 25 sseqtrid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ ( Base ` K ) )
27 simprr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S =/= (/) )
28 n0
 |-  ( S =/= (/) <-> E. y y e. S )
29 27 28 sylib
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> E. y y e. S )
30 18 sselda
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> y e. ran I )
31 25 fneq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I Fn dom I <-> I Fn ( Base ` K ) ) )
32 15 31 mpbird
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn dom I )
33 32 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> I Fn dom I )
34 fvelrnb
 |-  ( I Fn dom I -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) )
35 33 34 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) )
36 30 35 mpbid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> E. x e. dom I ( I ` x ) = y )
37 fnfun
 |-  ( I Fn ( Base ` K ) -> Fun I )
38 15 37 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> Fun I )
39 fvimacnv
 |-  ( ( Fun I /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) )
40 38 39 sylan
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) )
41 ne0i
 |-  ( x e. ( `' I " S ) -> ( `' I " S ) =/= (/) )
42 40 41 syl6bi
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) )
43 42 ex
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( x e. dom I -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) ) )
44 eleq1
 |-  ( ( I ` x ) = y -> ( ( I ` x ) e. S <-> y e. S ) )
45 44 biimprd
 |-  ( ( I ` x ) = y -> ( y e. S -> ( I ` x ) e. S ) )
46 45 imim1d
 |-  ( ( I ` x ) = y -> ( ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) -> ( y e. S -> ( `' I " S ) =/= (/) ) ) )
47 43 46 syl9
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( I ` x ) = y -> ( x e. dom I -> ( y e. S -> ( `' I " S ) =/= (/) ) ) ) )
48 47 com24
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( y e. S -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) ) )
49 48 imp
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) )
50 49 rexlimdv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( E. x e. dom I ( I ` x ) = y -> ( `' I " S ) =/= (/) ) )
51 36 50 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( `' I " S ) =/= (/) )
52 29 51 exlimddv
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) =/= (/) )
53 eqid
 |-  ( glb ` K ) = ( glb ` K )
54 3 53 1 2 dihglb
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I " S ) C_ ( Base ` K ) /\ ( `' I " S ) =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) )
55 24 26 52 54 syl12anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) )
56 fvres
 |-  ( y e. ( `' I " S ) -> ( ( I |` ( `' I " S ) ) ` y ) = ( I ` y ) )
57 56 iineq2i
 |-  |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^|_ y e. ( `' I " S ) ( I ` y )
58 55 57 eqtr4di
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) )
59 hlclat
 |-  ( K e. HL -> K e. CLat )
60 59 ad2antrr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> K e. CLat )
61 3 53 clatglbcl
 |-  ( ( K e. CLat /\ ( `' I " S ) C_ ( Base ` K ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) )
62 60 26 61 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) )
63 3 1 2 dihcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I )
64 62 63 syldan
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I )
65 58 64 eqeltrrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) e. ran I )
66 23 65 eqeltrrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| S e. ran I )