| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihatexv2.a |
|- A = ( Atoms ` K ) |
| 2 |
|
dihatexv2.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihatexv2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dihatexv2.v |
|- V = ( Base ` U ) |
| 5 |
|
dihatexv2.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
dihatexv2.n |
|- N = ( LSpan ` U ) |
| 7 |
|
dihatexv2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
dihatexv2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 11 |
10
|
anim2i |
|- ( ( ph /\ Q e. A ) -> ( ph /\ Q e. ( Base ` K ) ) ) |
| 12 |
8
|
adantr |
|- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
eldifi |
|- ( x e. ( V \ { .0. } ) -> x e. V ) |
| 14 |
2 3 4 6 7
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. V ) -> ( N ` { x } ) e. ran I ) |
| 15 |
8 13 14
|
syl2an |
|- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( N ` { x } ) e. ran I ) |
| 16 |
9 2 7
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { x } ) e. ran I ) -> ( `' I ` ( N ` { x } ) ) e. ( Base ` K ) ) |
| 17 |
12 15 16
|
syl2anc |
|- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( `' I ` ( N ` { x } ) ) e. ( Base ` K ) ) |
| 18 |
|
eleq1a |
|- ( ( `' I ` ( N ` { x } ) ) e. ( Base ` K ) -> ( Q = ( `' I ` ( N ` { x } ) ) -> Q e. ( Base ` K ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( Q = ( `' I ` ( N ` { x } ) ) -> Q e. ( Base ` K ) ) ) |
| 20 |
19
|
rexlimdva |
|- ( ph -> ( E. x e. ( V \ { .0. } ) Q = ( `' I ` ( N ` { x } ) ) -> Q e. ( Base ` K ) ) ) |
| 21 |
20
|
imdistani |
|- ( ( ph /\ E. x e. ( V \ { .0. } ) Q = ( `' I ` ( N ` { x } ) ) ) -> ( ph /\ Q e. ( Base ` K ) ) ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ Q e. ( Base ` K ) ) -> ( K e. HL /\ W e. H ) ) |
| 23 |
|
simpr |
|- ( ( ph /\ Q e. ( Base ` K ) ) -> Q e. ( Base ` K ) ) |
| 24 |
9 1 2 3 4 5 6 7 22 23
|
dihatexv |
|- ( ( ph /\ Q e. ( Base ` K ) ) -> ( Q e. A <-> E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) ) ) |
| 25 |
22
|
adantr |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
| 26 |
22 13 14
|
syl2an |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( N ` { x } ) e. ran I ) |
| 27 |
2 7
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { x } ) e. ran I ) -> ( I ` ( `' I ` ( N ` { x } ) ) ) = ( N ` { x } ) ) |
| 28 |
25 26 27
|
syl2anc |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( I ` ( `' I ` ( N ` { x } ) ) ) = ( N ` { x } ) ) |
| 29 |
28
|
eqeq2d |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( ( I ` Q ) = ( I ` ( `' I ` ( N ` { x } ) ) ) <-> ( I ` Q ) = ( N ` { x } ) ) ) |
| 30 |
|
simplr |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> Q e. ( Base ` K ) ) |
| 31 |
25 26 16
|
syl2anc |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( `' I ` ( N ` { x } ) ) e. ( Base ` K ) ) |
| 32 |
9 2 7
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. ( Base ` K ) /\ ( `' I ` ( N ` { x } ) ) e. ( Base ` K ) ) -> ( ( I ` Q ) = ( I ` ( `' I ` ( N ` { x } ) ) ) <-> Q = ( `' I ` ( N ` { x } ) ) ) ) |
| 33 |
25 30 31 32
|
syl3anc |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( ( I ` Q ) = ( I ` ( `' I ` ( N ` { x } ) ) ) <-> Q = ( `' I ` ( N ` { x } ) ) ) ) |
| 34 |
29 33
|
bitr3d |
|- ( ( ( ph /\ Q e. ( Base ` K ) ) /\ x e. ( V \ { .0. } ) ) -> ( ( I ` Q ) = ( N ` { x } ) <-> Q = ( `' I ` ( N ` { x } ) ) ) ) |
| 35 |
34
|
rexbidva |
|- ( ( ph /\ Q e. ( Base ` K ) ) -> ( E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) <-> E. x e. ( V \ { .0. } ) Q = ( `' I ` ( N ` { x } ) ) ) ) |
| 36 |
24 35
|
bitrd |
|- ( ( ph /\ Q e. ( Base ` K ) ) -> ( Q e. A <-> E. x e. ( V \ { .0. } ) Q = ( `' I ` ( N ` { x } ) ) ) ) |
| 37 |
11 21 36
|
pm5.21nd |
|- ( ph -> ( Q e. A <-> E. x e. ( V \ { .0. } ) Q = ( `' I ` ( N ` { x } ) ) ) ) |