Description: Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of Crawley p. 121. line 17. See also dvhopN and dihpN . (Contributed by NM, 27-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvheveccl.h | |
|
dvheveccl.b | |
||
dvheveccl.t | |
||
dvheveccl.u | |
||
dvheveccl.v | |
||
dvheveccl.z | |
||
dvheveccl.e | |
||
dvheveccl.k | |
||
Assertion | dvheveccl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvheveccl.h | |
|
2 | dvheveccl.b | |
|
3 | dvheveccl.t | |
|
4 | dvheveccl.u | |
|
5 | dvheveccl.v | |
|
6 | dvheveccl.z | |
|
7 | dvheveccl.e | |
|
8 | dvheveccl.k | |
|
9 | 2 1 3 | idltrn | |
10 | 8 9 | syl | |
11 | eqid | |
|
12 | 1 3 11 | tendoidcl | |
13 | 8 12 | syl | |
14 | 1 3 11 4 5 | dvhelvbasei | |
15 | 8 10 13 14 | syl12anc | |
16 | eqid | |
|
17 | 2 1 3 11 16 | tendo1ne0 | |
18 | 8 17 | syl | |
19 | 2 1 3 4 6 16 | dvh0g | |
20 | 8 19 | syl | |
21 | eqtr | |
|
22 | opthg | |
|
23 | 10 13 22 | syl2anc | |
24 | simpr | |
|
25 | 23 24 | syl6bi | |
26 | 21 25 | syl5 | |
27 | 20 26 | mpan2d | |
28 | 27 | necon3d | |
29 | 18 28 | mpd | |
30 | eldifsn | |
|
31 | 15 29 30 | sylanbrc | |
32 | 7 31 | eqeltrid | |