Metamath Proof Explorer


Theorem dvheveccl

Description: Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of Crawley p. 121. line 17. See also dvhopN and dihpN . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses dvheveccl.h H=LHypK
dvheveccl.b B=BaseK
dvheveccl.t T=LTrnKW
dvheveccl.u U=DVecHKW
dvheveccl.v V=BaseU
dvheveccl.z 0˙=0U
dvheveccl.e E=IBIT
dvheveccl.k φKHLWH
Assertion dvheveccl φEV0˙

Proof

Step Hyp Ref Expression
1 dvheveccl.h H=LHypK
2 dvheveccl.b B=BaseK
3 dvheveccl.t T=LTrnKW
4 dvheveccl.u U=DVecHKW
5 dvheveccl.v V=BaseU
6 dvheveccl.z 0˙=0U
7 dvheveccl.e E=IBIT
8 dvheveccl.k φKHLWH
9 2 1 3 idltrn KHLWHIBT
10 8 9 syl φIBT
11 eqid TEndoKW=TEndoKW
12 1 3 11 tendoidcl KHLWHITTEndoKW
13 8 12 syl φITTEndoKW
14 1 3 11 4 5 dvhelvbasei KHLWHIBTITTEndoKWIBITV
15 8 10 13 14 syl12anc φIBITV
16 eqid fTIB=fTIB
17 2 1 3 11 16 tendo1ne0 KHLWHITfTIB
18 8 17 syl φITfTIB
19 2 1 3 4 6 16 dvh0g KHLWH0˙=IBfTIB
20 8 19 syl φ0˙=IBfTIB
21 eqtr IBIT=0˙0˙=IBfTIBIBIT=IBfTIB
22 opthg IBTITTEndoKWIBIT=IBfTIBIB=IBIT=fTIB
23 10 13 22 syl2anc φIBIT=IBfTIBIB=IBIT=fTIB
24 simpr IB=IBIT=fTIBIT=fTIB
25 23 24 syl6bi φIBIT=IBfTIBIT=fTIB
26 21 25 syl5 φIBIT=0˙0˙=IBfTIBIT=fTIB
27 20 26 mpan2d φIBIT=0˙IT=fTIB
28 27 necon3d φITfTIBIBIT0˙
29 18 28 mpd φIBIT0˙
30 eldifsn IBITV0˙IBITVIBIT0˙
31 15 29 30 sylanbrc φIBITV0˙
32 7 31 eqeltrid φEV0˙