Metamath Proof Explorer


Theorem dvhopN

Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace E . Part of Lemma M of Crawley p. 121, line 18. We represent their e, sigma, f by ` <. (I |`` B ) , ( I |`T ) >. , U , <. F , O >. . We swapped the order of vector sum (their juxtaposition i.e. composition) to show <. F , O >. first. Note that O and ` (I |`T ) are the zero and one of the division ring E , and ` ( I |`B ) is the zero of the translation group. S is the scalar product. (Contributed by NM, 21-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dvhop.b B=BaseK
dvhop.h H=LHypK
dvhop.t T=LTrnKW
dvhop.e E=TEndoKW
dvhop.p P=aE,bEcTacbc
dvhop.a A=fT×E,gT×E1stf1stg2ndfP2ndg
dvhop.s S=sE,fT×Es1stfs2ndf
dvhop.o O=cTIB
Assertion dvhopN KHLWHFTUEFU=FOAUSIBIT

Proof

Step Hyp Ref Expression
1 dvhop.b B=BaseK
2 dvhop.h H=LHypK
3 dvhop.t T=LTrnKW
4 dvhop.e E=TEndoKW
5 dvhop.p P=aE,bEcTacbc
6 dvhop.a A=fT×E,gT×E1stf1stg2ndfP2ndg
7 dvhop.s S=sE,fT×Es1stfs2ndf
8 dvhop.o O=cTIB
9 simprr KHLWHFTUEUE
10 1 2 3 idltrn KHLWHIBT
11 10 adantr KHLWHFTUEIBT
12 2 3 4 tendoidcl KHLWHITE
13 12 adantr KHLWHFTUEITE
14 7 dvhopspN UEIBTITEUSIBIT=UIBUIT
15 9 11 13 14 syl12anc KHLWHFTUEUSIBIT=UIBUIT
16 1 2 4 tendoid KHLWHUEUIB=IB
17 16 adantrl KHLWHFTUEUIB=IB
18 2 3 4 tendo1mulr KHLWHUEUIT=U
19 18 adantrl KHLWHFTUEUIT=U
20 17 19 opeq12d KHLWHFTUEUIBUIT=IBU
21 15 20 eqtrd KHLWHFTUEUSIBIT=IBU
22 21 oveq2d KHLWHFTUEFOAUSIBIT=FOAIBU
23 simprl KHLWHFTUEFT
24 1 2 3 4 8 tendo0cl KHLWHOE
25 24 adantr KHLWHFTUEOE
26 6 dvhopaddN FTOEIBTUEFOAIBU=FIBOPU
27 23 25 11 9 26 syl22anc KHLWHFTUEFOAIBU=FIBOPU
28 1 2 3 ltrn1o KHLWHFTF:B1-1 ontoB
29 28 adantrr KHLWHFTUEF:B1-1 ontoB
30 f1of F:B1-1 ontoBF:BB
31 fcoi1 F:BBFIB=F
32 29 30 31 3syl KHLWHFTUEFIB=F
33 1 2 3 4 8 5 tendo0pl KHLWHUEOPU=U
34 33 adantrl KHLWHFTUEOPU=U
35 32 34 opeq12d KHLWHFTUEFIBOPU=FU
36 22 27 35 3eqtrrd KHLWHFTUEFU=FOAUSIBIT