Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace E . Part of Lemma M of Crawley p. 121, line 18. We represent their e, sigma, f by ` <. (I |`` B ) , ( I |`T ) >. , U , <. F , O >. . We swapped the order of vector sum (their juxtaposition i.e. composition) to show <. F , O >. first. Note that O and ` (I |`T ) are the zero and one of the division ring E , and ` ( I |`B ) is the zero of the translation group. S is the scalar product. (Contributed by NM, 21-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvhop.b | |
|
dvhop.h | |
||
dvhop.t | |
||
dvhop.e | |
||
dvhop.p | |
||
dvhop.a | |
||
dvhop.s | |
||
dvhop.o | |
||
Assertion | dvhopN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhop.b | |
|
2 | dvhop.h | |
|
3 | dvhop.t | |
|
4 | dvhop.e | |
|
5 | dvhop.p | |
|
6 | dvhop.a | |
|
7 | dvhop.s | |
|
8 | dvhop.o | |
|
9 | simprr | |
|
10 | 1 2 3 | idltrn | |
11 | 10 | adantr | |
12 | 2 3 4 | tendoidcl | |
13 | 12 | adantr | |
14 | 7 | dvhopspN | |
15 | 9 11 13 14 | syl12anc | |
16 | 1 2 4 | tendoid | |
17 | 16 | adantrl | |
18 | 2 3 4 | tendo1mulr | |
19 | 18 | adantrl | |
20 | 17 19 | opeq12d | |
21 | 15 20 | eqtrd | |
22 | 21 | oveq2d | |
23 | simprl | |
|
24 | 1 2 3 4 8 | tendo0cl | |
25 | 24 | adantr | |
26 | 6 | dvhopaddN | |
27 | 23 25 11 9 26 | syl22anc | |
28 | 1 2 3 | ltrn1o | |
29 | 28 | adantrr | |
30 | f1of | |
|
31 | fcoi1 | |
|
32 | 29 30 31 | 3syl | |
33 | 1 2 3 4 8 5 | tendo0pl | |
34 | 33 | adantrl | |
35 | 32 34 | opeq12d | |
36 | 22 27 35 | 3eqtrrd | |