Metamath Proof Explorer


Theorem dvhopaddN

Description: Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis dvhopadd.a A = f T × E , g T × E 1 st f 1 st g 2 nd f P 2 nd g
Assertion dvhopaddN F T U E G T V E F U A G V = F G U P V

Proof

Step Hyp Ref Expression
1 dvhopadd.a A = f T × E , g T × E 1 st f 1 st g 2 nd f P 2 nd g
2 opelxpi F T U E F U T × E
3 opelxpi G T V E G V T × E
4 1 dvhvaddval F U T × E G V T × E F U A G V = 1 st F U 1 st G V 2 nd F U P 2 nd G V
5 2 3 4 syl2an F T U E G T V E F U A G V = 1 st F U 1 st G V 2 nd F U P 2 nd G V
6 op1stg F T U E 1 st F U = F
7 6 adantr F T U E G T V E 1 st F U = F
8 op1stg G T V E 1 st G V = G
9 8 adantl F T U E G T V E 1 st G V = G
10 7 9 coeq12d F T U E G T V E 1 st F U 1 st G V = F G
11 op2ndg F T U E 2 nd F U = U
12 op2ndg G T V E 2 nd G V = V
13 11 12 oveqan12d F T U E G T V E 2 nd F U P 2 nd G V = U P V
14 10 13 opeq12d F T U E G T V E 1 st F U 1 st G V 2 nd F U P 2 nd G V = F G U P V
15 5 14 eqtrd F T U E G T V E F U A G V = F G U P V