Step |
Hyp |
Ref |
Expression |
1 |
|
dvhopadd.a |
⊢ 𝐴 = ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ( 2nd ‘ 𝑓 ) 𝑃 ( 2nd ‘ 𝑔 ) ) 〉 ) |
2 |
|
opelxpi |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) → 〈 𝐹 , 𝑈 〉 ∈ ( 𝑇 × 𝐸 ) ) |
3 |
|
opelxpi |
⊢ ( ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) → 〈 𝐺 , 𝑉 〉 ∈ ( 𝑇 × 𝐸 ) ) |
4 |
1
|
dvhvaddval |
⊢ ( ( 〈 𝐹 , 𝑈 〉 ∈ ( 𝑇 × 𝐸 ) ∧ 〈 𝐺 , 𝑉 〉 ∈ ( 𝑇 × 𝐸 ) ) → ( 〈 𝐹 , 𝑈 〉 𝐴 〈 𝐺 , 𝑉 〉 ) = 〈 ( ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) ∘ ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) ) , ( ( 2nd ‘ 〈 𝐹 , 𝑈 〉 ) 𝑃 ( 2nd ‘ 〈 𝐺 , 𝑉 〉 ) ) 〉 ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( 〈 𝐹 , 𝑈 〉 𝐴 〈 𝐺 , 𝑉 〉 ) = 〈 ( ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) ∘ ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) ) , ( ( 2nd ‘ 〈 𝐹 , 𝑈 〉 ) 𝑃 ( 2nd ‘ 〈 𝐺 , 𝑉 〉 ) ) 〉 ) |
6 |
|
op1stg |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) → ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) = 𝐹 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) = 𝐹 ) |
8 |
|
op1stg |
⊢ ( ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) → ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) = 𝐺 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) = 𝐺 ) |
10 |
7 9
|
coeq12d |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) ∘ ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
11 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) → ( 2nd ‘ 〈 𝐹 , 𝑈 〉 ) = 𝑈 ) |
12 |
|
op2ndg |
⊢ ( ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) → ( 2nd ‘ 〈 𝐺 , 𝑉 〉 ) = 𝑉 ) |
13 |
11 12
|
oveqan12d |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( ( 2nd ‘ 〈 𝐹 , 𝑈 〉 ) 𝑃 ( 2nd ‘ 〈 𝐺 , 𝑉 〉 ) ) = ( 𝑈 𝑃 𝑉 ) ) |
14 |
10 13
|
opeq12d |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → 〈 ( ( 1st ‘ 〈 𝐹 , 𝑈 〉 ) ∘ ( 1st ‘ 〈 𝐺 , 𝑉 〉 ) ) , ( ( 2nd ‘ 〈 𝐹 , 𝑈 〉 ) 𝑃 ( 2nd ‘ 〈 𝐺 , 𝑉 〉 ) ) 〉 = 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑈 𝑃 𝑉 ) 〉 ) |
15 |
5 14
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸 ) ) → ( 〈 𝐹 , 𝑈 〉 𝐴 〈 𝐺 , 𝑉 〉 ) = 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑈 𝑃 𝑉 ) 〉 ) |