| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvhopsp.s | ⊢ 𝑆  =  ( 𝑠  ∈  𝐸 ,  𝑓  ∈  ( 𝑇  ×  𝐸 )  ↦  〈 ( 𝑠 ‘ ( 1st  ‘ 𝑓 ) ) ,  ( 𝑠  ∘  ( 2nd  ‘ 𝑓 ) ) 〉 ) | 
						
							| 2 |  | opelxpi | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  〈 𝐹 ,  𝑈 〉  ∈  ( 𝑇  ×  𝐸 ) ) | 
						
							| 3 | 1 | dvhvscaval | ⊢ ( ( 𝑅  ∈  𝐸  ∧  〈 𝐹 ,  𝑈 〉  ∈  ( 𝑇  ×  𝐸 ) )  →  ( 𝑅 𝑆 〈 𝐹 ,  𝑈 〉 )  =  〈 ( 𝑅 ‘ ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 ) ) ,  ( 𝑅  ∘  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 ) ) 〉 ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑅  ∈  𝐸  ∧  ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 ) )  →  ( 𝑅 𝑆 〈 𝐹 ,  𝑈 〉 )  =  〈 ( 𝑅 ‘ ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 ) ) ,  ( 𝑅  ∘  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 ) ) 〉 ) | 
						
							| 5 |  | op1stg | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 )  =  𝐹 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  ( 𝑅 ‘ ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 ) )  =  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 7 |  | op2ndg | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 )  =  𝑈 ) | 
						
							| 8 | 7 | coeq2d | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  ( 𝑅  ∘  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 ) )  =  ( 𝑅  ∘  𝑈 ) ) | 
						
							| 9 | 6 8 | opeq12d | ⊢ ( ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 )  →  〈 ( 𝑅 ‘ ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 ) ) ,  ( 𝑅  ∘  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 ) ) 〉  =  〈 ( 𝑅 ‘ 𝐹 ) ,  ( 𝑅  ∘  𝑈 ) 〉 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑅  ∈  𝐸  ∧  ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 ) )  →  〈 ( 𝑅 ‘ ( 1st  ‘ 〈 𝐹 ,  𝑈 〉 ) ) ,  ( 𝑅  ∘  ( 2nd  ‘ 〈 𝐹 ,  𝑈 〉 ) ) 〉  =  〈 ( 𝑅 ‘ 𝐹 ) ,  ( 𝑅  ∘  𝑈 ) 〉 ) | 
						
							| 11 | 4 10 | eqtrd | ⊢ ( ( 𝑅  ∈  𝐸  ∧  ( 𝐹  ∈  𝑇  ∧  𝑈  ∈  𝐸 ) )  →  ( 𝑅 𝑆 〈 𝐹 ,  𝑈 〉 )  =  〈 ( 𝑅 ‘ 𝐹 ) ,  ( 𝑅  ∘  𝑈 ) 〉 ) |