Step |
Hyp |
Ref |
Expression |
1 |
|
dvhopsp.s |
|- S = ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
2 |
|
opelxpi |
|- ( ( F e. T /\ U e. E ) -> <. F , U >. e. ( T X. E ) ) |
3 |
1
|
dvhvscaval |
|- ( ( R e. E /\ <. F , U >. e. ( T X. E ) ) -> ( R S <. F , U >. ) = <. ( R ` ( 1st ` <. F , U >. ) ) , ( R o. ( 2nd ` <. F , U >. ) ) >. ) |
4 |
2 3
|
sylan2 |
|- ( ( R e. E /\ ( F e. T /\ U e. E ) ) -> ( R S <. F , U >. ) = <. ( R ` ( 1st ` <. F , U >. ) ) , ( R o. ( 2nd ` <. F , U >. ) ) >. ) |
5 |
|
op1stg |
|- ( ( F e. T /\ U e. E ) -> ( 1st ` <. F , U >. ) = F ) |
6 |
5
|
fveq2d |
|- ( ( F e. T /\ U e. E ) -> ( R ` ( 1st ` <. F , U >. ) ) = ( R ` F ) ) |
7 |
|
op2ndg |
|- ( ( F e. T /\ U e. E ) -> ( 2nd ` <. F , U >. ) = U ) |
8 |
7
|
coeq2d |
|- ( ( F e. T /\ U e. E ) -> ( R o. ( 2nd ` <. F , U >. ) ) = ( R o. U ) ) |
9 |
6 8
|
opeq12d |
|- ( ( F e. T /\ U e. E ) -> <. ( R ` ( 1st ` <. F , U >. ) ) , ( R o. ( 2nd ` <. F , U >. ) ) >. = <. ( R ` F ) , ( R o. U ) >. ) |
10 |
9
|
adantl |
|- ( ( R e. E /\ ( F e. T /\ U e. E ) ) -> <. ( R ` ( 1st ` <. F , U >. ) ) , ( R o. ( 2nd ` <. F , U >. ) ) >. = <. ( R ` F ) , ( R o. U ) >. ) |
11 |
4 10
|
eqtrd |
|- ( ( R e. E /\ ( F e. T /\ U e. E ) ) -> ( R S <. F , U >. ) = <. ( R ` F ) , ( R o. U ) >. ) |