Step |
Hyp |
Ref |
Expression |
1 |
|
mapdhvmap.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdhvmap.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdhvmap.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdhvmap.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
mapdhvmap.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
mapdhvmap.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdhvmap.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
8 |
|
mapdhvmap.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdhvmap.p |
⊢ 𝑃 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
mapdhvmap.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
mapdhvmap.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( LSpan ‘ ( LDual ‘ 𝑈 ) ) = ( LSpan ‘ ( LDual ‘ 𝑈 ) ) |
17 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
18 |
1 2 3 4 13 9 10 11
|
hvmaplfl |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
19 |
1 12 2 3 4 14 9 10 11
|
hvmaplkr |
⊢ ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑃 ‘ 𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
20 |
1 12 8 2 3 5 13 14 15 16 10 17 18 19
|
mapdsn3 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ( LSpan ‘ ( LDual ‘ 𝑈 ) ) ‘ { ( 𝑃 ‘ 𝑋 ) } ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
23 |
1 2 3 4 6 21 22 9 10 11
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g ‘ 𝐶 ) } ) ) |
24 |
23
|
eldifad |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) |
25 |
24
|
snssd |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑋 ) } ⊆ ( Base ‘ 𝐶 ) ) |
26 |
1 2 15 16 6 21 7 10 25
|
lcdlsp |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( 𝑃 ‘ 𝑋 ) } ) = ( ( LSpan ‘ ( LDual ‘ 𝑈 ) ) ‘ { ( 𝑃 ‘ 𝑋 ) } ) ) |
27 |
20 26
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { ( 𝑃 ‘ 𝑋 ) } ) ) |