Metamath Proof Explorer


Theorem mapdhvmap

Description: Relationship between mapd and HVMap , which can be used to satisfy the last hypothesis of mapdpg . Equation 10 of Baer p. 48. (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses mapdhvmap.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdhvmap.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdhvmap.v 𝑉 = ( Base ‘ 𝑈 )
mapdhvmap.z 0 = ( 0g𝑈 )
mapdhvmap.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdhvmap.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdhvmap.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdhvmap.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdhvmap.p 𝑃 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
mapdhvmap.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdhvmap.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion mapdhvmap ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { ( 𝑃𝑋 ) } ) )

Proof

Step Hyp Ref Expression
1 mapdhvmap.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdhvmap.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdhvmap.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdhvmap.z 0 = ( 0g𝑈 )
5 mapdhvmap.n 𝑁 = ( LSpan ‘ 𝑈 )
6 mapdhvmap.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 mapdhvmap.j 𝐽 = ( LSpan ‘ 𝐶 )
8 mapdhvmap.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
9 mapdhvmap.p 𝑃 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
10 mapdhvmap.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 mapdhvmap.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
12 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
14 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
15 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
16 eqid ( LSpan ‘ ( LDual ‘ 𝑈 ) ) = ( LSpan ‘ ( LDual ‘ 𝑈 ) )
17 11 eldifad ( 𝜑𝑋𝑉 )
18 1 2 3 4 13 9 10 11 hvmaplfl ( 𝜑 → ( 𝑃𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
19 1 12 2 3 4 14 9 10 11 hvmaplkr ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑃𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) )
20 1 12 8 2 3 5 13 14 15 16 10 17 18 19 mapdsn3 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ( LSpan ‘ ( LDual ‘ 𝑈 ) ) ‘ { ( 𝑃𝑋 ) } ) )
21 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
22 eqid ( 0g𝐶 ) = ( 0g𝐶 )
23 1 2 3 4 6 21 22 9 10 11 hvmapcl2 ( 𝜑 → ( 𝑃𝑋 ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g𝐶 ) } ) )
24 23 eldifad ( 𝜑 → ( 𝑃𝑋 ) ∈ ( Base ‘ 𝐶 ) )
25 24 snssd ( 𝜑 → { ( 𝑃𝑋 ) } ⊆ ( Base ‘ 𝐶 ) )
26 1 2 15 16 6 21 7 10 25 lcdlsp ( 𝜑 → ( 𝐽 ‘ { ( 𝑃𝑋 ) } ) = ( ( LSpan ‘ ( LDual ‘ 𝑈 ) ) ‘ { ( 𝑃𝑋 ) } ) )
27 20 26 eqtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { ( 𝑃𝑋 ) } ) )