| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvmaplkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hvmaplkr.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hvmaplkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hvmaplkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
hvmaplkr.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
hvmaplkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
hvmaplkr.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hvmaplkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
hvmaplkr.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 14 |
1 3 2 4 10 11 5 12 13 7 8
|
hvmapfval |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝐿 ‘ ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) ) |
| 17 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 18 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ ( LDual ‘ 𝑈 ) ) = ( 0g ‘ ( LDual ‘ 𝑈 ) ) |
| 20 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) |
| 22 |
1 2 3 4 10 11 12 13 5 17 6 18 19 20 21 8 9
|
lcfrlem11 |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |
| 23 |
16 22
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |