Metamath Proof Explorer


Theorem hvmaplkr

Description: Kernel of the vector to functional map. TODO: make this become lcfrlem11 . (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses hvmaplkr.h 𝐻 = ( LHyp ‘ 𝐾 )
hvmaplkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hvmaplkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hvmaplkr.v 𝑉 = ( Base ‘ 𝑈 )
hvmaplkr.z 0 = ( 0g𝑈 )
hvmaplkr.l 𝐿 = ( LKer ‘ 𝑈 )
hvmaplkr.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hvmaplkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hvmaplkr.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion hvmaplkr ( 𝜑 → ( 𝐿 ‘ ( 𝑀𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 hvmaplkr.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hvmaplkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 hvmaplkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hvmaplkr.v 𝑉 = ( Base ‘ 𝑈 )
5 hvmaplkr.z 0 = ( 0g𝑈 )
6 hvmaplkr.l 𝐿 = ( LKer ‘ 𝑈 )
7 hvmaplkr.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
8 hvmaplkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hvmaplkr.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
10 eqid ( +g𝑈 ) = ( +g𝑈 )
11 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
12 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
13 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
14 1 3 2 4 10 11 5 12 13 7 8 hvmapfval ( 𝜑𝑀 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) )
15 14 fveq1d ( 𝜑 → ( 𝑀𝑋 ) = ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) )
16 15 fveq2d ( 𝜑 → ( 𝐿 ‘ ( 𝑀𝑋 ) ) = ( 𝐿 ‘ ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) )
17 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
18 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
19 eqid ( 0g ‘ ( LDual ‘ 𝑈 ) ) = ( 0g ‘ ( LDual ‘ 𝑈 ) )
20 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
21 eqid ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) )
22 1 2 3 4 10 11 12 13 5 17 6 18 19 20 21 8 9 lcfrlem11 ( 𝜑 → ( 𝐿 ‘ ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 ( +g𝑈 ) ( 𝑗 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )
23 16 22 eqtrd ( 𝜑 → ( 𝐿 ‘ ( 𝑀𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )