Metamath Proof Explorer


Theorem hvmaplkr

Description: Kernel of the vector to functional map. TODO: make this become lcfrlem11 . (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses hvmaplkr.h
|- H = ( LHyp ` K )
hvmaplkr.o
|- O = ( ( ocH ` K ) ` W )
hvmaplkr.u
|- U = ( ( DVecH ` K ) ` W )
hvmaplkr.v
|- V = ( Base ` U )
hvmaplkr.z
|- .0. = ( 0g ` U )
hvmaplkr.l
|- L = ( LKer ` U )
hvmaplkr.m
|- M = ( ( HVMap ` K ) ` W )
hvmaplkr.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hvmaplkr.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion hvmaplkr
|- ( ph -> ( L ` ( M ` X ) ) = ( O ` { X } ) )

Proof

Step Hyp Ref Expression
1 hvmaplkr.h
 |-  H = ( LHyp ` K )
2 hvmaplkr.o
 |-  O = ( ( ocH ` K ) ` W )
3 hvmaplkr.u
 |-  U = ( ( DVecH ` K ) ` W )
4 hvmaplkr.v
 |-  V = ( Base ` U )
5 hvmaplkr.z
 |-  .0. = ( 0g ` U )
6 hvmaplkr.l
 |-  L = ( LKer ` U )
7 hvmaplkr.m
 |-  M = ( ( HVMap ` K ) ` W )
8 hvmaplkr.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 hvmaplkr.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
10 eqid
 |-  ( +g ` U ) = ( +g ` U )
11 eqid
 |-  ( .s ` U ) = ( .s ` U )
12 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
13 eqid
 |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) )
14 1 3 2 4 10 11 5 12 13 7 8 hvmapfval
 |-  ( ph -> M = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) )
15 14 fveq1d
 |-  ( ph -> ( M ` X ) = ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) )
16 15 fveq2d
 |-  ( ph -> ( L ` ( M ` X ) ) = ( L ` ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) ) )
17 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
18 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
19 eqid
 |-  ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) )
20 eqid
 |-  { f e. ( LFnl ` U ) | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) }
21 eqid
 |-  ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) )
22 1 2 3 4 10 11 12 13 5 17 6 18 19 20 21 8 9 lcfrlem11
 |-  ( ph -> ( L ` ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) ) = ( O ` { X } ) )
23 16 22 eqtrd
 |-  ( ph -> ( L ` ( M ` X ) ) = ( O ` { X } ) )