Step |
Hyp |
Ref |
Expression |
1 |
|
hvmaplkr.h |
|- H = ( LHyp ` K ) |
2 |
|
hvmaplkr.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
hvmaplkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hvmaplkr.v |
|- V = ( Base ` U ) |
5 |
|
hvmaplkr.z |
|- .0. = ( 0g ` U ) |
6 |
|
hvmaplkr.l |
|- L = ( LKer ` U ) |
7 |
|
hvmaplkr.m |
|- M = ( ( HVMap ` K ) ` W ) |
8 |
|
hvmaplkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hvmaplkr.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
10 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
11 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
12 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
14 |
1 3 2 4 10 11 5 12 13 7 8
|
hvmapfval |
|- ( ph -> M = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ) |
15 |
14
|
fveq1d |
|- ( ph -> ( M ` X ) = ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( L ` ( M ` X ) ) = ( L ` ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) ) ) |
17 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
18 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
19 |
|
eqid |
|- ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) ) |
20 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } |
21 |
|
eqid |
|- ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) |
22 |
1 2 3 4 10 11 12 13 5 17 6 18 19 20 21 8 9
|
lcfrlem11 |
|- ( ph -> ( L ` ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. t e. ( O ` { x } ) v = ( t ( +g ` U ) ( j ( .s ` U ) x ) ) ) ) ) ` X ) ) = ( O ` { X } ) ) |
23 |
16 22
|
eqtrd |
|- ( ph -> ( L ` ( M ` X ) ) = ( O ` { X } ) ) |