Metamath Proof Explorer


Theorem mapdhvmap

Description: Relationship between mapd and HVMap , which can be used to satisfy the last hypothesis of mapdpg . Equation 10 of Baer p. 48. (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses mapdhvmap.h
|- H = ( LHyp ` K )
mapdhvmap.u
|- U = ( ( DVecH ` K ) ` W )
mapdhvmap.v
|- V = ( Base ` U )
mapdhvmap.z
|- .0. = ( 0g ` U )
mapdhvmap.n
|- N = ( LSpan ` U )
mapdhvmap.c
|- C = ( ( LCDual ` K ) ` W )
mapdhvmap.j
|- J = ( LSpan ` C )
mapdhvmap.m
|- M = ( ( mapd ` K ) ` W )
mapdhvmap.p
|- P = ( ( HVMap ` K ) ` W )
mapdhvmap.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdhvmap.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion mapdhvmap
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { ( P ` X ) } ) )

Proof

Step Hyp Ref Expression
1 mapdhvmap.h
 |-  H = ( LHyp ` K )
2 mapdhvmap.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdhvmap.v
 |-  V = ( Base ` U )
4 mapdhvmap.z
 |-  .0. = ( 0g ` U )
5 mapdhvmap.n
 |-  N = ( LSpan ` U )
6 mapdhvmap.c
 |-  C = ( ( LCDual ` K ) ` W )
7 mapdhvmap.j
 |-  J = ( LSpan ` C )
8 mapdhvmap.m
 |-  M = ( ( mapd ` K ) ` W )
9 mapdhvmap.p
 |-  P = ( ( HVMap ` K ) ` W )
10 mapdhvmap.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 mapdhvmap.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
12 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
13 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
14 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
15 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
16 eqid
 |-  ( LSpan ` ( LDual ` U ) ) = ( LSpan ` ( LDual ` U ) )
17 11 eldifad
 |-  ( ph -> X e. V )
18 1 2 3 4 13 9 10 11 hvmaplfl
 |-  ( ph -> ( P ` X ) e. ( LFnl ` U ) )
19 1 12 2 3 4 14 9 10 11 hvmaplkr
 |-  ( ph -> ( ( LKer ` U ) ` ( P ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) )
20 1 12 8 2 3 5 13 14 15 16 10 17 18 19 mapdsn3
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( ( LSpan ` ( LDual ` U ) ) ` { ( P ` X ) } ) )
21 eqid
 |-  ( Base ` C ) = ( Base ` C )
22 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
23 1 2 3 4 6 21 22 9 10 11 hvmapcl2
 |-  ( ph -> ( P ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) )
24 23 eldifad
 |-  ( ph -> ( P ` X ) e. ( Base ` C ) )
25 24 snssd
 |-  ( ph -> { ( P ` X ) } C_ ( Base ` C ) )
26 1 2 15 16 6 21 7 10 25 lcdlsp
 |-  ( ph -> ( J ` { ( P ` X ) } ) = ( ( LSpan ` ( LDual ` U ) ) ` { ( P ` X ) } ) )
27 20 26 eqtr4d
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { ( P ` X ) } ) )