Step |
Hyp |
Ref |
Expression |
1 |
|
mapdhvmap.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdhvmap.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdhvmap.v |
|- V = ( Base ` U ) |
4 |
|
mapdhvmap.z |
|- .0. = ( 0g ` U ) |
5 |
|
mapdhvmap.n |
|- N = ( LSpan ` U ) |
6 |
|
mapdhvmap.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
mapdhvmap.j |
|- J = ( LSpan ` C ) |
8 |
|
mapdhvmap.m |
|- M = ( ( mapd ` K ) ` W ) |
9 |
|
mapdhvmap.p |
|- P = ( ( HVMap ` K ) ` W ) |
10 |
|
mapdhvmap.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
mapdhvmap.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
12 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
13 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
14 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
15 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
16 |
|
eqid |
|- ( LSpan ` ( LDual ` U ) ) = ( LSpan ` ( LDual ` U ) ) |
17 |
11
|
eldifad |
|- ( ph -> X e. V ) |
18 |
1 2 3 4 13 9 10 11
|
hvmaplfl |
|- ( ph -> ( P ` X ) e. ( LFnl ` U ) ) |
19 |
1 12 2 3 4 14 9 10 11
|
hvmaplkr |
|- ( ph -> ( ( LKer ` U ) ` ( P ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
20 |
1 12 8 2 3 5 13 14 15 16 10 17 18 19
|
mapdsn3 |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( ( LSpan ` ( LDual ` U ) ) ` { ( P ` X ) } ) ) |
21 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
22 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
23 |
1 2 3 4 6 21 22 9 10 11
|
hvmapcl2 |
|- ( ph -> ( P ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) |
24 |
23
|
eldifad |
|- ( ph -> ( P ` X ) e. ( Base ` C ) ) |
25 |
24
|
snssd |
|- ( ph -> { ( P ` X ) } C_ ( Base ` C ) ) |
26 |
1 2 15 16 6 21 7 10 25
|
lcdlsp |
|- ( ph -> ( J ` { ( P ` X ) } ) = ( ( LSpan ` ( LDual ` U ) ) ` { ( P ` X ) } ) ) |
27 |
20 26
|
eqtr4d |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { ( P ` X ) } ) ) |