Metamath Proof Explorer


Theorem mapdhvmap

Description: Relationship between mapd and HVMap , which can be used to satisfy the last hypothesis of mapdpg . Equation 10 of Baer p. 48. (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses mapdhvmap.h H = LHyp K
mapdhvmap.u U = DVecH K W
mapdhvmap.v V = Base U
mapdhvmap.z 0 ˙ = 0 U
mapdhvmap.n N = LSpan U
mapdhvmap.c C = LCDual K W
mapdhvmap.j J = LSpan C
mapdhvmap.m M = mapd K W
mapdhvmap.p P = HVMap K W
mapdhvmap.k φ K HL W H
mapdhvmap.x φ X V 0 ˙
Assertion mapdhvmap φ M N X = J P X

Proof

Step Hyp Ref Expression
1 mapdhvmap.h H = LHyp K
2 mapdhvmap.u U = DVecH K W
3 mapdhvmap.v V = Base U
4 mapdhvmap.z 0 ˙ = 0 U
5 mapdhvmap.n N = LSpan U
6 mapdhvmap.c C = LCDual K W
7 mapdhvmap.j J = LSpan C
8 mapdhvmap.m M = mapd K W
9 mapdhvmap.p P = HVMap K W
10 mapdhvmap.k φ K HL W H
11 mapdhvmap.x φ X V 0 ˙
12 eqid ocH K W = ocH K W
13 eqid LFnl U = LFnl U
14 eqid LKer U = LKer U
15 eqid LDual U = LDual U
16 eqid LSpan LDual U = LSpan LDual U
17 11 eldifad φ X V
18 1 2 3 4 13 9 10 11 hvmaplfl φ P X LFnl U
19 1 12 2 3 4 14 9 10 11 hvmaplkr φ LKer U P X = ocH K W X
20 1 12 8 2 3 5 13 14 15 16 10 17 18 19 mapdsn3 φ M N X = LSpan LDual U P X
21 eqid Base C = Base C
22 eqid 0 C = 0 C
23 1 2 3 4 6 21 22 9 10 11 hvmapcl2 φ P X Base C 0 C
24 23 eldifad φ P X Base C
25 24 snssd φ P X Base C
26 1 2 15 16 6 21 7 10 25 lcdlsp φ J P X = LSpan LDual U P X
27 20 26 eqtr4d φ M N X = J P X