Description: Relationship between mapd and HVMap , which can be used to satisfy the last hypothesis of mapdpg . Equation 10 of Baer p. 48. (Contributed by NM, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdhvmap.h | |
|
mapdhvmap.u | |
||
mapdhvmap.v | |
||
mapdhvmap.z | |
||
mapdhvmap.n | |
||
mapdhvmap.c | |
||
mapdhvmap.j | |
||
mapdhvmap.m | |
||
mapdhvmap.p | |
||
mapdhvmap.k | |
||
mapdhvmap.x | |
||
Assertion | mapdhvmap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdhvmap.h | |
|
2 | mapdhvmap.u | |
|
3 | mapdhvmap.v | |
|
4 | mapdhvmap.z | |
|
5 | mapdhvmap.n | |
|
6 | mapdhvmap.c | |
|
7 | mapdhvmap.j | |
|
8 | mapdhvmap.m | |
|
9 | mapdhvmap.p | |
|
10 | mapdhvmap.k | |
|
11 | mapdhvmap.x | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 11 | eldifad | |
18 | 1 2 3 4 13 9 10 11 | hvmaplfl | |
19 | 1 12 2 3 4 14 9 10 11 | hvmaplkr | |
20 | 1 12 8 2 3 5 13 14 15 16 10 17 18 19 | mapdsn3 | |
21 | eqid | |
|
22 | eqid | |
|
23 | 1 2 3 4 6 21 22 9 10 11 | hvmapcl2 | |
24 | 23 | eldifad | |
25 | 24 | snssd | |
26 | 1 2 15 16 6 21 7 10 25 | lcdlsp | |
27 | 20 26 | eqtr4d | |