Metamath Proof Explorer


Theorem mapdhvmap

Description: Relationship between mapd and HVMap , which can be used to satisfy the last hypothesis of mapdpg . Equation 10 of Baer p. 48. (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses mapdhvmap.h H=LHypK
mapdhvmap.u U=DVecHKW
mapdhvmap.v V=BaseU
mapdhvmap.z 0˙=0U
mapdhvmap.n N=LSpanU
mapdhvmap.c C=LCDualKW
mapdhvmap.j J=LSpanC
mapdhvmap.m M=mapdKW
mapdhvmap.p P=HVMapKW
mapdhvmap.k φKHLWH
mapdhvmap.x φXV0˙
Assertion mapdhvmap φMNX=JPX

Proof

Step Hyp Ref Expression
1 mapdhvmap.h H=LHypK
2 mapdhvmap.u U=DVecHKW
3 mapdhvmap.v V=BaseU
4 mapdhvmap.z 0˙=0U
5 mapdhvmap.n N=LSpanU
6 mapdhvmap.c C=LCDualKW
7 mapdhvmap.j J=LSpanC
8 mapdhvmap.m M=mapdKW
9 mapdhvmap.p P=HVMapKW
10 mapdhvmap.k φKHLWH
11 mapdhvmap.x φXV0˙
12 eqid ocHKW=ocHKW
13 eqid LFnlU=LFnlU
14 eqid LKerU=LKerU
15 eqid LDualU=LDualU
16 eqid LSpanLDualU=LSpanLDualU
17 11 eldifad φXV
18 1 2 3 4 13 9 10 11 hvmaplfl φPXLFnlU
19 1 12 2 3 4 14 9 10 11 hvmaplkr φLKerUPX=ocHKWX
20 1 12 8 2 3 5 13 14 15 16 10 17 18 19 mapdsn3 φMNX=LSpanLDualUPX
21 eqid BaseC=BaseC
22 eqid 0C=0C
23 1 2 3 4 6 21 22 9 10 11 hvmapcl2 φPXBaseC0C
24 23 eldifad φPXBaseC
25 24 snssd φPXBaseC
26 1 2 15 16 6 21 7 10 25 lcdlsp φJPX=LSpanLDualUPX
27 20 26 eqtr4d φMNX=JPX