Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hvmaplfl
Next ⟩
hvmaplkr
Metamath Proof Explorer
Ascii
Unicode
Theorem
hvmaplfl
Description:
The vector to functional map value is a functional.
(Contributed by
NM
, 28-Mar-2015)
Ref
Expression
Hypotheses
hvmaplfl.h
⊢
H
=
LHyp
⁡
K
hvmaplfl.u
⊢
U
=
DVecH
⁡
K
⁡
W
hvmaplfl.v
⊢
V
=
Base
U
hvmaplfl.z
⊢
0
˙
=
0
U
hvmaplfl.f
⊢
F
=
LFnl
⁡
U
hvmaplfl.m
⊢
M
=
HVMap
⁡
K
⁡
W
hvmaplfl.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
hvmaplfl.x
⊢
φ
→
X
∈
V
∖
0
˙
Assertion
hvmaplfl
⊢
φ
→
M
⁡
X
∈
F
Proof
Step
Hyp
Ref
Expression
1
hvmaplfl.h
⊢
H
=
LHyp
⁡
K
2
hvmaplfl.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
hvmaplfl.v
⊢
V
=
Base
U
4
hvmaplfl.z
⊢
0
˙
=
0
U
5
hvmaplfl.f
⊢
F
=
LFnl
⁡
U
6
hvmaplfl.m
⊢
M
=
HVMap
⁡
K
⁡
W
7
hvmaplfl.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
8
hvmaplfl.x
⊢
φ
→
X
∈
V
∖
0
˙
9
eqid
⊢
LCDual
⁡
K
⁡
W
=
LCDual
⁡
K
⁡
W
10
eqid
⊢
Base
LCDual
⁡
K
⁡
W
=
Base
LCDual
⁡
K
⁡
W
11
eqid
⊢
0
LCDual
⁡
K
⁡
W
=
0
LCDual
⁡
K
⁡
W
12
1
2
3
4
9
10
11
6
7
8
hvmapcl2
⊢
φ
→
M
⁡
X
∈
Base
LCDual
⁡
K
⁡
W
∖
0
LCDual
⁡
K
⁡
W
13
12
eldifad
⊢
φ
→
M
⁡
X
∈
Base
LCDual
⁡
K
⁡
W
14
1
9
10
2
5
7
13
lcdvbaselfl
⊢
φ
→
M
⁡
X
∈
F