Metamath Proof Explorer


Theorem lcdvbaselfl

Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h H=LHypK
lcdvbasess.c C=LCDualKW
lcdvbasess.v V=BaseC
lcdvbasess.u U=DVecHKW
lcdvbasess.f F=LFnlU
lcdvbasess.k φKHLWH
lcdvbaselfl.x φXV
Assertion lcdvbaselfl φXF

Proof

Step Hyp Ref Expression
1 lcdvbasess.h H=LHypK
2 lcdvbasess.c C=LCDualKW
3 lcdvbasess.v V=BaseC
4 lcdvbasess.u U=DVecHKW
5 lcdvbasess.f F=LFnlU
6 lcdvbasess.k φKHLWH
7 lcdvbaselfl.x φXV
8 1 2 3 4 5 6 lcdvbasess φVF
9 8 7 sseldd φXF