Metamath Proof Explorer


Theorem lcdvbaselfl

Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h H = LHyp K
lcdvbasess.c C = LCDual K W
lcdvbasess.v V = Base C
lcdvbasess.u U = DVecH K W
lcdvbasess.f F = LFnl U
lcdvbasess.k φ K HL W H
lcdvbaselfl.x φ X V
Assertion lcdvbaselfl φ X F

Proof

Step Hyp Ref Expression
1 lcdvbasess.h H = LHyp K
2 lcdvbasess.c C = LCDual K W
3 lcdvbasess.v V = Base C
4 lcdvbasess.u U = DVecH K W
5 lcdvbasess.f F = LFnl U
6 lcdvbasess.k φ K HL W H
7 lcdvbaselfl.x φ X V
8 1 2 3 4 5 6 lcdvbasess φ V F
9 8 7 sseldd φ X F