Metamath Proof Explorer


Theorem lcdvbasess

Description: The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h H=LHypK
lcdvbasess.c C=LCDualKW
lcdvbasess.v V=BaseC
lcdvbasess.u U=DVecHKW
lcdvbasess.f F=LFnlU
lcdvbasess.k φKHLWH
Assertion lcdvbasess φVF

Proof

Step Hyp Ref Expression
1 lcdvbasess.h H=LHypK
2 lcdvbasess.c C=LCDualKW
3 lcdvbasess.v V=BaseC
4 lcdvbasess.u U=DVecHKW
5 lcdvbasess.f F=LFnlU
6 lcdvbasess.k φKHLWH
7 eqid ocHKW=ocHKW
8 eqid LKerU=LKerU
9 eqid fF|ocHKWocHKWLKerUf=LKerUf=fF|ocHKWocHKWLKerUf=LKerUf
10 1 7 2 3 4 5 8 9 6 lcdvbase φV=fF|ocHKWocHKWLKerUf=LKerUf
11 ssrab2 fF|ocHKWocHKWLKerUf=LKerUfF
12 10 11 eqsstrdi φVF