Metamath Proof Explorer


Theorem lcdvbasess

Description: The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvbasess.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvbasess.v 𝑉 = ( Base ‘ 𝐶 )
lcdvbasess.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvbasess.f 𝐹 = ( LFnl ‘ 𝑈 )
lcdvbasess.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdvbasess ( 𝜑𝑉𝐹 )

Proof

Step Hyp Ref Expression
1 lcdvbasess.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvbasess.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvbasess.v 𝑉 = ( Base ‘ 𝐶 )
4 lcdvbasess.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 lcdvbasess.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcdvbasess.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
9 eqid { 𝑓𝐹 ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } = { 𝑓𝐹 ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) }
10 1 7 2 3 4 5 8 9 6 lcdvbase ( 𝜑𝑉 = { 𝑓𝐹 ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } )
11 ssrab2 { 𝑓𝐹 ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ⊆ 𝐹
12 10 11 eqsstrdi ( 𝜑𝑉𝐹 )