Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvbase.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdvbase.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdvbase.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcdvbase.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
5 |
|
lcdvbase.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
lcdvbase.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcdvbase.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
lcdvbase.b |
⊢ 𝐵 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
9 |
|
lcdvbase.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
11 |
1 2 3 5 6 7 10 9 8
|
lcdval2 |
⊢ ( 𝜑 → 𝐶 = ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) ) ) |
13 |
4 12
|
syl5eq |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) ) ) |
14 |
|
ssrab2 |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ⊆ 𝐹 |
15 |
8 14
|
eqsstri |
⊢ 𝐵 ⊆ 𝐹 |
16 |
|
eqid |
⊢ ( Base ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) |
17 |
1 5 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
6 10 16 17
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 ) |
19 |
15 18
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( LDual ‘ 𝑈 ) ) ) |
20 |
|
eqid |
⊢ ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) = ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) |
21 |
20 16
|
ressbas2 |
⊢ ( 𝐵 ⊆ ( Base ‘ ( LDual ‘ 𝑈 ) ) → 𝐵 = ( Base ‘ ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) ) ) |
22 |
19 21
|
syl |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( LDual ‘ 𝑈 ) ↾s 𝐵 ) ) ) |
23 |
13 22
|
eqtr4d |
⊢ ( 𝜑 → 𝑉 = 𝐵 ) |