Metamath Proof Explorer


Theorem ldualvbase

Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvbase.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvbase.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvbase.v 𝑉 = ( Base ‘ 𝐷 )
ldualvbase.w ( 𝜑𝑊𝑋 )
Assertion ldualvbase ( 𝜑𝑉 = 𝐹 )

Proof

Step Hyp Ref Expression
1 ldualvbase.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvbase.d 𝐷 = ( LDual ‘ 𝑊 )
3 ldualvbase.v 𝑉 = ( Base ‘ 𝐷 )
4 ldualvbase.w ( 𝜑𝑊𝑋 )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 eqid ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) )
7 eqid ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) )
8 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
9 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
10 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
11 eqid ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) )
12 eqid ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) )
13 5 6 7 1 2 8 9 10 11 12 4 ldualset ( 𝜑𝐷 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) )
14 13 fveq2d ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) ) )
15 1 fvexi 𝐹 ∈ V
16 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } )
17 16 lmodbase ( 𝐹 ∈ V → 𝐹 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) ) )
18 15 17 ax-mp 𝐹 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓𝐹 ↦ ( 𝑓f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) )
19 14 3 18 3eqtr4g ( 𝜑𝑉 = 𝐹 )