Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvbase.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvbase.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
3 |
|
ldualvbase.v |
⊢ 𝑉 = ( Base ‘ 𝐷 ) |
4 |
|
ldualvbase.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) |
13 |
5 6 7 1 2 8 9 10 11 12 4
|
ldualset |
⊢ ( 𝜑 → 𝐷 = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) ) |
15 |
1
|
fvexi |
⊢ 𝐹 ∈ V |
16 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) |
17 |
16
|
lmodbase |
⊢ ( 𝐹 ∈ V → 𝐹 = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) ) |
18 |
15 17
|
ax-mp |
⊢ 𝐹 = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( 𝐹 × 𝐹 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑊 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) , 𝑓 ∈ 𝐹 ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) |
19 |
14 3 18
|
3eqtr4g |
⊢ ( 𝜑 → 𝑉 = 𝐹 ) |