Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldualelvbase
Metamath Proof Explorer
Description: Utility theorem for converting a functional to a vector of the dual
space in order to use standard vector theorems. (Contributed by NM , 6-Jan-2015)
Ref
Expression
Hypotheses
ldualelvbase.f
⊢ 𝐹 = ( LFnl ‘ 𝑊 )
ldualelvbase.d
⊢ 𝐷 = ( LDual ‘ 𝑊 )
ldualelvbase.v
⊢ 𝑉 = ( Base ‘ 𝐷 )
ldualelvbase.w
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 )
ldualelvbase.g
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 )
Assertion
ldualelvbase
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )
Proof
Step
Hyp
Ref
Expression
1
ldualelvbase.f
⊢ 𝐹 = ( LFnl ‘ 𝑊 )
2
ldualelvbase.d
⊢ 𝐷 = ( LDual ‘ 𝑊 )
3
ldualelvbase.v
⊢ 𝑉 = ( Base ‘ 𝐷 )
4
ldualelvbase.w
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 )
5
ldualelvbase.g
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 )
6
1 2 3 4
ldualvbase
⊢ ( 𝜑 → 𝑉 = 𝐹 )
7
5 6
eleqtrrd
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )