Metamath Proof Explorer


Theorem ldualelvbase

Description: Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses ldualelvbase.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualelvbase.d 𝐷 = ( LDual ‘ 𝑊 )
ldualelvbase.v 𝑉 = ( Base ‘ 𝐷 )
ldualelvbase.w ( 𝜑𝑊𝑋 )
ldualelvbase.g ( 𝜑𝐺𝐹 )
Assertion ldualelvbase ( 𝜑𝐺𝑉 )

Proof

Step Hyp Ref Expression
1 ldualelvbase.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualelvbase.d 𝐷 = ( LDual ‘ 𝑊 )
3 ldualelvbase.v 𝑉 = ( Base ‘ 𝐷 )
4 ldualelvbase.w ( 𝜑𝑊𝑋 )
5 ldualelvbase.g ( 𝜑𝐺𝐹 )
6 1 2 3 4 ldualvbase ( 𝜑𝑉 = 𝐹 )
7 5 6 eleqtrrd ( 𝜑𝐺𝑉 )