Metamath Proof Explorer


Theorem ldualelvbase

Description: Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses ldualelvbase.f
|- F = ( LFnl ` W )
ldualelvbase.d
|- D = ( LDual ` W )
ldualelvbase.v
|- V = ( Base ` D )
ldualelvbase.w
|- ( ph -> W e. X )
ldualelvbase.g
|- ( ph -> G e. F )
Assertion ldualelvbase
|- ( ph -> G e. V )

Proof

Step Hyp Ref Expression
1 ldualelvbase.f
 |-  F = ( LFnl ` W )
2 ldualelvbase.d
 |-  D = ( LDual ` W )
3 ldualelvbase.v
 |-  V = ( Base ` D )
4 ldualelvbase.w
 |-  ( ph -> W e. X )
5 ldualelvbase.g
 |-  ( ph -> G e. F )
6 1 2 3 4 ldualvbase
 |-  ( ph -> V = F )
7 5 6 eleqtrrd
 |-  ( ph -> G e. V )