Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldualelvbase
Metamath Proof Explorer
Description: Utility theorem for converting a functional to a vector of the dual
space in order to use standard vector theorems. (Contributed by NM , 6-Jan-2015)
Ref
Expression
Hypotheses
ldualelvbase.f
|- F = ( LFnl ` W )
ldualelvbase.d
|- D = ( LDual ` W )
ldualelvbase.v
|- V = ( Base ` D )
ldualelvbase.w
|- ( ph -> W e. X )
ldualelvbase.g
|- ( ph -> G e. F )
Assertion
ldualelvbase
|- ( ph -> G e. V )
Proof
Step
Hyp
Ref
Expression
1
ldualelvbase.f
|- F = ( LFnl ` W )
2
ldualelvbase.d
|- D = ( LDual ` W )
3
ldualelvbase.v
|- V = ( Base ` D )
4
ldualelvbase.w
|- ( ph -> W e. X )
5
ldualelvbase.g
|- ( ph -> G e. F )
6
1 2 3 4
ldualvbase
|- ( ph -> V = F )
7
5 6
eleqtrrd
|- ( ph -> G e. V )