Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvadd.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualvadd.r |
|- R = ( Scalar ` W ) |
3 |
|
ldualvadd.a |
|- .+ = ( +g ` R ) |
4 |
|
ldualvadd.d |
|- D = ( LDual ` W ) |
5 |
|
ldualvadd.p |
|- .+b = ( +g ` D ) |
6 |
|
ldualvadd.w |
|- ( ph -> W e. X ) |
7 |
|
ldualfvadd.q |
|- .+^ = ( oF .+ |` ( F X. F ) ) |
8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
12 |
|
eqid |
|- ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) = ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) |
13 |
8 3 7 1 4 2 9 10 11 12 6
|
ldualset |
|- ( ph -> D = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( +g ` D ) = ( +g ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
15 |
1
|
fvexi |
|- F e. _V |
16 |
|
id |
|- ( F e. _V -> F e. _V ) |
17 |
16 16
|
ofmresex |
|- ( F e. _V -> ( oF .+ |` ( F X. F ) ) e. _V ) |
18 |
15 17
|
ax-mp |
|- ( oF .+ |` ( F X. F ) ) e. _V |
19 |
7 18
|
eqeltri |
|- .+^ e. _V |
20 |
|
eqid |
|- ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) |
21 |
20
|
lmodplusg |
|- ( .+^ e. _V -> .+^ = ( +g ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
22 |
19 21
|
ax-mp |
|- .+^ = ( +g ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+^ >. , <. ( Scalar ` ndx ) , ( oppR ` R ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` R ) , f e. F |-> ( f oF ( .r ` R ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
23 |
14 5 22
|
3eqtr4g |
|- ( ph -> .+b = .+^ ) |