Step |
Hyp |
Ref |
Expression |
1 |
|
ldualset.v |
|- V = ( Base ` W ) |
2 |
|
ldualset.a |
|- .+ = ( +g ` R ) |
3 |
|
ldualset.p |
|- .+b = ( oF .+ |` ( F X. F ) ) |
4 |
|
ldualset.f |
|- F = ( LFnl ` W ) |
5 |
|
ldualset.d |
|- D = ( LDual ` W ) |
6 |
|
ldualset.r |
|- R = ( Scalar ` W ) |
7 |
|
ldualset.k |
|- K = ( Base ` R ) |
8 |
|
ldualset.t |
|- .x. = ( .r ` R ) |
9 |
|
ldualset.o |
|- O = ( oppR ` R ) |
10 |
|
ldualset.s |
|- .xb = ( k e. K , f e. F |-> ( f oF .x. ( V X. { k } ) ) ) |
11 |
|
ldualset.w |
|- ( ph -> W e. X ) |
12 |
|
elex |
|- ( W e. X -> W e. _V ) |
13 |
|
fveq2 |
|- ( w = W -> ( LFnl ` w ) = ( LFnl ` W ) ) |
14 |
13 4
|
eqtr4di |
|- ( w = W -> ( LFnl ` w ) = F ) |
15 |
14
|
opeq2d |
|- ( w = W -> <. ( Base ` ndx ) , ( LFnl ` w ) >. = <. ( Base ` ndx ) , F >. ) |
16 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
17 |
16 6
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = R ) |
18 |
17
|
fveq2d |
|- ( w = W -> ( +g ` ( Scalar ` w ) ) = ( +g ` R ) ) |
19 |
18 2
|
eqtr4di |
|- ( w = W -> ( +g ` ( Scalar ` w ) ) = .+ ) |
20 |
19
|
ofeqd |
|- ( w = W -> oF ( +g ` ( Scalar ` w ) ) = oF .+ ) |
21 |
14
|
sqxpeqd |
|- ( w = W -> ( ( LFnl ` w ) X. ( LFnl ` w ) ) = ( F X. F ) ) |
22 |
20 21
|
reseq12d |
|- ( w = W -> ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) = ( oF .+ |` ( F X. F ) ) ) |
23 |
22 3
|
eqtr4di |
|- ( w = W -> ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) = .+b ) |
24 |
23
|
opeq2d |
|- ( w = W -> <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) >. = <. ( +g ` ndx ) , .+b >. ) |
25 |
17
|
fveq2d |
|- ( w = W -> ( oppR ` ( Scalar ` w ) ) = ( oppR ` R ) ) |
26 |
25 9
|
eqtr4di |
|- ( w = W -> ( oppR ` ( Scalar ` w ) ) = O ) |
27 |
26
|
opeq2d |
|- ( w = W -> <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` w ) ) >. = <. ( Scalar ` ndx ) , O >. ) |
28 |
15 24 27
|
tpeq123d |
|- ( w = W -> { <. ( Base ` ndx ) , ( LFnl ` w ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` w ) ) >. } = { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } ) |
29 |
17
|
fveq2d |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` R ) ) |
30 |
29 7
|
eqtr4di |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) |
31 |
17
|
fveq2d |
|- ( w = W -> ( .r ` ( Scalar ` w ) ) = ( .r ` R ) ) |
32 |
31 8
|
eqtr4di |
|- ( w = W -> ( .r ` ( Scalar ` w ) ) = .x. ) |
33 |
32
|
ofeqd |
|- ( w = W -> oF ( .r ` ( Scalar ` w ) ) = oF .x. ) |
34 |
|
eqidd |
|- ( w = W -> f = f ) |
35 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
36 |
35 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
37 |
36
|
xpeq1d |
|- ( w = W -> ( ( Base ` w ) X. { k } ) = ( V X. { k } ) ) |
38 |
33 34 37
|
oveq123d |
|- ( w = W -> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) = ( f oF .x. ( V X. { k } ) ) ) |
39 |
30 14 38
|
mpoeq123dv |
|- ( w = W -> ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) = ( k e. K , f e. F |-> ( f oF .x. ( V X. { k } ) ) ) ) |
40 |
39 10
|
eqtr4di |
|- ( w = W -> ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) = .xb ) |
41 |
40
|
opeq2d |
|- ( w = W -> <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) >. = <. ( .s ` ndx ) , .xb >. ) |
42 |
41
|
sneqd |
|- ( w = W -> { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) >. } = { <. ( .s ` ndx ) , .xb >. } ) |
43 |
28 42
|
uneq12d |
|- ( w = W -> ( { <. ( Base ` ndx ) , ( LFnl ` w ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` w ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , .xb >. } ) ) |
44 |
|
df-ldual |
|- LDual = ( w e. _V |-> ( { <. ( Base ` ndx ) , ( LFnl ` w ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` w ) ) |` ( ( LFnl ` w ) X. ( LFnl ` w ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` w ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` w ) ) , f e. ( LFnl ` w ) |-> ( f oF ( .r ` ( Scalar ` w ) ) ( ( Base ` w ) X. { k } ) ) ) >. } ) ) |
45 |
|
tpex |
|- { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } e. _V |
46 |
|
snex |
|- { <. ( .s ` ndx ) , .xb >. } e. _V |
47 |
45 46
|
unex |
|- ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , .xb >. } ) e. _V |
48 |
43 44 47
|
fvmpt |
|- ( W e. _V -> ( LDual ` W ) = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , .xb >. } ) ) |
49 |
5 48
|
eqtrid |
|- ( W e. _V -> D = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , .xb >. } ) ) |
50 |
11 12 49
|
3syl |
|- ( ph -> D = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , .+b >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , .xb >. } ) ) |