| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cld |
|- LDual |
| 1 |
|
vv |
|- v |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cbs |
|- Base |
| 4 |
|
cnx |
|- ndx |
| 5 |
4 3
|
cfv |
|- ( Base ` ndx ) |
| 6 |
|
clfn |
|- LFnl |
| 7 |
1
|
cv |
|- v |
| 8 |
7 6
|
cfv |
|- ( LFnl ` v ) |
| 9 |
5 8
|
cop |
|- <. ( Base ` ndx ) , ( LFnl ` v ) >. |
| 10 |
|
cplusg |
|- +g |
| 11 |
4 10
|
cfv |
|- ( +g ` ndx ) |
| 12 |
|
csca |
|- Scalar |
| 13 |
7 12
|
cfv |
|- ( Scalar ` v ) |
| 14 |
13 10
|
cfv |
|- ( +g ` ( Scalar ` v ) ) |
| 15 |
14
|
cof |
|- oF ( +g ` ( Scalar ` v ) ) |
| 16 |
8 8
|
cxp |
|- ( ( LFnl ` v ) X. ( LFnl ` v ) ) |
| 17 |
15 16
|
cres |
|- ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) |
| 18 |
11 17
|
cop |
|- <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. |
| 19 |
4 12
|
cfv |
|- ( Scalar ` ndx ) |
| 20 |
|
coppr |
|- oppR |
| 21 |
13 20
|
cfv |
|- ( oppR ` ( Scalar ` v ) ) |
| 22 |
19 21
|
cop |
|- <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. |
| 23 |
9 18 22
|
ctp |
|- { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } |
| 24 |
|
cvsca |
|- .s |
| 25 |
4 24
|
cfv |
|- ( .s ` ndx ) |
| 26 |
|
vk |
|- k |
| 27 |
13 3
|
cfv |
|- ( Base ` ( Scalar ` v ) ) |
| 28 |
|
vf |
|- f |
| 29 |
28
|
cv |
|- f |
| 30 |
|
cmulr |
|- .r |
| 31 |
13 30
|
cfv |
|- ( .r ` ( Scalar ` v ) ) |
| 32 |
31
|
cof |
|- oF ( .r ` ( Scalar ` v ) ) |
| 33 |
7 3
|
cfv |
|- ( Base ` v ) |
| 34 |
26
|
cv |
|- k |
| 35 |
34
|
csn |
|- { k } |
| 36 |
33 35
|
cxp |
|- ( ( Base ` v ) X. { k } ) |
| 37 |
29 36 32
|
co |
|- ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) |
| 38 |
26 28 27 8 37
|
cmpo |
|- ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) |
| 39 |
25 38
|
cop |
|- <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. |
| 40 |
39
|
csn |
|- { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } |
| 41 |
23 40
|
cun |
|- ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) |
| 42 |
1 2 41
|
cmpt |
|- ( v e. _V |-> ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) ) |
| 43 |
0 42
|
wceq |
|- LDual = ( v e. _V |-> ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) ) |