Step |
Hyp |
Ref |
Expression |
0 |
|
cld |
|- LDual |
1 |
|
vv |
|- v |
2 |
|
cvv |
|- _V |
3 |
|
cbs |
|- Base |
4 |
|
cnx |
|- ndx |
5 |
4 3
|
cfv |
|- ( Base ` ndx ) |
6 |
|
clfn |
|- LFnl |
7 |
1
|
cv |
|- v |
8 |
7 6
|
cfv |
|- ( LFnl ` v ) |
9 |
5 8
|
cop |
|- <. ( Base ` ndx ) , ( LFnl ` v ) >. |
10 |
|
cplusg |
|- +g |
11 |
4 10
|
cfv |
|- ( +g ` ndx ) |
12 |
|
csca |
|- Scalar |
13 |
7 12
|
cfv |
|- ( Scalar ` v ) |
14 |
13 10
|
cfv |
|- ( +g ` ( Scalar ` v ) ) |
15 |
14
|
cof |
|- oF ( +g ` ( Scalar ` v ) ) |
16 |
8 8
|
cxp |
|- ( ( LFnl ` v ) X. ( LFnl ` v ) ) |
17 |
15 16
|
cres |
|- ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) |
18 |
11 17
|
cop |
|- <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. |
19 |
4 12
|
cfv |
|- ( Scalar ` ndx ) |
20 |
|
coppr |
|- oppR |
21 |
13 20
|
cfv |
|- ( oppR ` ( Scalar ` v ) ) |
22 |
19 21
|
cop |
|- <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. |
23 |
9 18 22
|
ctp |
|- { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } |
24 |
|
cvsca |
|- .s |
25 |
4 24
|
cfv |
|- ( .s ` ndx ) |
26 |
|
vk |
|- k |
27 |
13 3
|
cfv |
|- ( Base ` ( Scalar ` v ) ) |
28 |
|
vf |
|- f |
29 |
28
|
cv |
|- f |
30 |
|
cmulr |
|- .r |
31 |
13 30
|
cfv |
|- ( .r ` ( Scalar ` v ) ) |
32 |
31
|
cof |
|- oF ( .r ` ( Scalar ` v ) ) |
33 |
7 3
|
cfv |
|- ( Base ` v ) |
34 |
26
|
cv |
|- k |
35 |
34
|
csn |
|- { k } |
36 |
33 35
|
cxp |
|- ( ( Base ` v ) X. { k } ) |
37 |
29 36 32
|
co |
|- ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) |
38 |
26 28 27 8 37
|
cmpo |
|- ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) |
39 |
25 38
|
cop |
|- <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. |
40 |
39
|
csn |
|- { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } |
41 |
23 40
|
cun |
|- ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) |
42 |
1 2 41
|
cmpt |
|- ( v e. _V |-> ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) ) |
43 |
0 42
|
wceq |
|- LDual = ( v e. _V |-> ( { <. ( Base ` ndx ) , ( LFnl ` v ) >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` v ) ) |` ( ( LFnl ` v ) X. ( LFnl ` v ) ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` v ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` v ) ) , f e. ( LFnl ` v ) |-> ( f oF ( .r ` ( Scalar ` v ) ) ( ( Base ` v ) X. { k } ) ) ) >. } ) ) |