Step |
Hyp |
Ref |
Expression |
0 |
|
cld |
⊢ LDual |
1 |
|
vv |
⊢ 𝑣 |
2 |
|
cvv |
⊢ V |
3 |
|
cbs |
⊢ Base |
4 |
|
cnx |
⊢ ndx |
5 |
4 3
|
cfv |
⊢ ( Base ‘ ndx ) |
6 |
|
clfn |
⊢ LFnl |
7 |
1
|
cv |
⊢ 𝑣 |
8 |
7 6
|
cfv |
⊢ ( LFnl ‘ 𝑣 ) |
9 |
5 8
|
cop |
⊢ 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑣 ) 〉 |
10 |
|
cplusg |
⊢ +g |
11 |
4 10
|
cfv |
⊢ ( +g ‘ ndx ) |
12 |
|
csca |
⊢ Scalar |
13 |
7 12
|
cfv |
⊢ ( Scalar ‘ 𝑣 ) |
14 |
13 10
|
cfv |
⊢ ( +g ‘ ( Scalar ‘ 𝑣 ) ) |
15 |
14
|
cof |
⊢ ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) |
16 |
8 8
|
cxp |
⊢ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) |
17 |
15 16
|
cres |
⊢ ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) |
18 |
11 17
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) 〉 |
19 |
4 12
|
cfv |
⊢ ( Scalar ‘ ndx ) |
20 |
|
coppr |
⊢ oppr |
21 |
13 20
|
cfv |
⊢ ( oppr ‘ ( Scalar ‘ 𝑣 ) ) |
22 |
19 21
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑣 ) ) 〉 |
23 |
9 18 22
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑣 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑣 ) ) 〉 } |
24 |
|
cvsca |
⊢ ·𝑠 |
25 |
4 24
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
26 |
|
vk |
⊢ 𝑘 |
27 |
13 3
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑣 ) ) |
28 |
|
vf |
⊢ 𝑓 |
29 |
28
|
cv |
⊢ 𝑓 |
30 |
|
cmulr |
⊢ .r |
31 |
13 30
|
cfv |
⊢ ( .r ‘ ( Scalar ‘ 𝑣 ) ) |
32 |
31
|
cof |
⊢ ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) |
33 |
7 3
|
cfv |
⊢ ( Base ‘ 𝑣 ) |
34 |
26
|
cv |
⊢ 𝑘 |
35 |
34
|
csn |
⊢ { 𝑘 } |
36 |
33 35
|
cxp |
⊢ ( ( Base ‘ 𝑣 ) × { 𝑘 } ) |
37 |
29 36 32
|
co |
⊢ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) |
38 |
26 28 27 8 37
|
cmpo |
⊢ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) |
39 |
25 38
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) 〉 |
40 |
39
|
csn |
⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) 〉 } |
41 |
23 40
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑣 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑣 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) 〉 } ) |
42 |
1 2 41
|
cmpt |
⊢ ( 𝑣 ∈ V ↦ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑣 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑣 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) 〉 } ) ) |
43 |
0 42
|
wceq |
⊢ LDual = ( 𝑣 ∈ V ↦ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑣 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ ( Scalar ‘ 𝑣 ) ) ↾ ( ( LFnl ‘ 𝑣 ) × ( LFnl ‘ 𝑣 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( oppr ‘ ( Scalar ‘ 𝑣 ) ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) , 𝑓 ∈ ( LFnl ‘ 𝑣 ) ↦ ( 𝑓 ∘f ( .r ‘ ( Scalar ‘ 𝑣 ) ) ( ( Base ‘ 𝑣 ) × { 𝑘 } ) ) ) 〉 } ) ) |