| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvbase.f |
|- F = ( LFnl ` W ) |
| 2 |
|
ldualvbase.d |
|- D = ( LDual ` W ) |
| 3 |
|
ldualvbase.v |
|- V = ( Base ` D ) |
| 4 |
|
ldualvbase.w |
|- ( ph -> W e. X ) |
| 5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 6 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 7 |
|
eqid |
|- ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) = ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) |
| 8 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 9 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 10 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
| 11 |
|
eqid |
|- ( oppR ` ( Scalar ` W ) ) = ( oppR ` ( Scalar ` W ) ) |
| 12 |
|
eqid |
|- ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) = ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) |
| 13 |
5 6 7 1 2 8 9 10 11 12 4
|
ldualset |
|- ( ph -> D = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( Base ` D ) = ( Base ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
| 15 |
1
|
fvexi |
|- F e. _V |
| 16 |
|
eqid |
|- ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) |
| 17 |
16
|
lmodbase |
|- ( F e. _V -> F = ( Base ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
| 18 |
15 17
|
ax-mp |
|- F = ( Base ` ( { <. ( Base ` ndx ) , F >. , <. ( +g ` ndx ) , ( oF ( +g ` ( Scalar ` W ) ) |` ( F X. F ) ) >. , <. ( Scalar ` ndx ) , ( oppR ` ( Scalar ` W ) ) >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` W ) ) , f e. F |-> ( f oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
| 19 |
14 3 18
|
3eqtr4g |
|- ( ph -> V = F ) |