Metamath Proof Explorer


Theorem ldualfvadd

Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvadd.f F=LFnlW
ldualvadd.r R=ScalarW
ldualvadd.a +˙=+R
ldualvadd.d D=LDualW
ldualvadd.p ˙=+D
ldualvadd.w φWX
ldualfvadd.q ˙=f+˙F×F
Assertion ldualfvadd φ˙=˙

Proof

Step Hyp Ref Expression
1 ldualvadd.f F=LFnlW
2 ldualvadd.r R=ScalarW
3 ldualvadd.a +˙=+R
4 ldualvadd.d D=LDualW
5 ldualvadd.p ˙=+D
6 ldualvadd.w φWX
7 ldualfvadd.q ˙=f+˙F×F
8 eqid BaseW=BaseW
9 eqid BaseR=BaseR
10 eqid R=R
11 eqid opprR=opprR
12 eqid kBaseR,fFfRfBaseW×k=kBaseR,fFfRfBaseW×k
13 8 3 7 1 4 2 9 10 11 12 6 ldualset φD=BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k
14 13 fveq2d φ+D=+BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k
15 1 fvexi FV
16 id FVFV
17 16 16 ofmresex FVf+˙F×FV
18 15 17 ax-mp f+˙F×FV
19 7 18 eqeltri ˙V
20 eqid BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k=BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k
21 20 lmodplusg ˙V˙=+BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k
22 19 21 ax-mp ˙=+BasendxF+ndx˙ScalarndxopprRndxkBaseR,fFfRfBaseW×k
23 14 5 22 3eqtr4g φ˙=˙