Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldualvadd
Next ⟩
ldualvaddcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldualvadd
Description:
Vector addition in the dual of a vector space.
(Contributed by
NM
, 21-Oct-2014)
Ref
Expression
Hypotheses
ldualvadd.f
⊢
F
=
LFnl
⁡
W
ldualvadd.r
⊢
R
=
Scalar
⁡
W
ldualvadd.a
⊢
+
˙
=
+
R
ldualvadd.d
⊢
D
=
LDual
⁡
W
ldualvadd.p
⊢
✚
˙
=
+
D
ldualvadd.w
⊢
φ
→
W
∈
X
ldualvadd.g
⊢
φ
→
G
∈
F
ldualvadd.h
⊢
φ
→
H
∈
F
Assertion
ldualvadd
⊢
φ
→
G
✚
˙
H
=
G
+
˙
f
H
Proof
Step
Hyp
Ref
Expression
1
ldualvadd.f
⊢
F
=
LFnl
⁡
W
2
ldualvadd.r
⊢
R
=
Scalar
⁡
W
3
ldualvadd.a
⊢
+
˙
=
+
R
4
ldualvadd.d
⊢
D
=
LDual
⁡
W
5
ldualvadd.p
⊢
✚
˙
=
+
D
6
ldualvadd.w
⊢
φ
→
W
∈
X
7
ldualvadd.g
⊢
φ
→
G
∈
F
8
ldualvadd.h
⊢
φ
→
H
∈
F
9
eqid
⊢
∘
f
⁡
+
˙
↾
F
×
F
=
∘
f
⁡
+
˙
↾
F
×
F
10
1
2
3
4
5
6
9
ldualfvadd
⊢
φ
→
✚
˙
=
∘
f
⁡
+
˙
↾
F
×
F
11
10
oveqd
⊢
φ
→
G
✚
˙
H
=
G
∘
f
⁡
+
˙
↾
F
×
F
H
12
7
8
ofmresval
⊢
φ
→
G
∘
f
⁡
+
˙
↾
F
×
F
H
=
G
+
˙
f
H
13
11
12
eqtrd
⊢
φ
→
G
✚
˙
H
=
G
+
˙
f
H