Metamath Proof Explorer


Theorem ldualvadd

Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvadd.f F = LFnl W
ldualvadd.r R = Scalar W
ldualvadd.a + ˙ = + R
ldualvadd.d D = LDual W
ldualvadd.p ˙ = + D
ldualvadd.w φ W X
ldualvadd.g φ G F
ldualvadd.h φ H F
Assertion ldualvadd φ G ˙ H = G + ˙ f H

Proof

Step Hyp Ref Expression
1 ldualvadd.f F = LFnl W
2 ldualvadd.r R = Scalar W
3 ldualvadd.a + ˙ = + R
4 ldualvadd.d D = LDual W
5 ldualvadd.p ˙ = + D
6 ldualvadd.w φ W X
7 ldualvadd.g φ G F
8 ldualvadd.h φ H F
9 eqid f + ˙ F × F = f + ˙ F × F
10 1 2 3 4 5 6 9 ldualfvadd φ ˙ = f + ˙ F × F
11 10 oveqd φ G ˙ H = G f + ˙ F × F H
12 7 8 ofmresval φ G f + ˙ F × F H = G + ˙ f H
13 11 12 eqtrd φ G ˙ H = G + ˙ f H