Metamath Proof Explorer


Theorem ldualvadd

Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvadd.f F=LFnlW
ldualvadd.r R=ScalarW
ldualvadd.a +˙=+R
ldualvadd.d D=LDualW
ldualvadd.p ˙=+D
ldualvadd.w φWX
ldualvadd.g φGF
ldualvadd.h φHF
Assertion ldualvadd φG˙H=G+˙fH

Proof

Step Hyp Ref Expression
1 ldualvadd.f F=LFnlW
2 ldualvadd.r R=ScalarW
3 ldualvadd.a +˙=+R
4 ldualvadd.d D=LDualW
5 ldualvadd.p ˙=+D
6 ldualvadd.w φWX
7 ldualvadd.g φGF
8 ldualvadd.h φHF
9 eqid f+˙F×F=f+˙F×F
10 1 2 3 4 5 6 9 ldualfvadd φ˙=f+˙F×F
11 10 oveqd φG˙H=Gf+˙F×FH
12 7 8 ofmresval φGf+˙F×FH=G+˙fH
13 11 12 eqtrd φG˙H=G+˙fH