Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualvadd.f | |- F = ( LFnl ` W ) |
|
ldualvadd.r | |- R = ( Scalar ` W ) |
||
ldualvadd.a | |- .+ = ( +g ` R ) |
||
ldualvadd.d | |- D = ( LDual ` W ) |
||
ldualvadd.p | |- .+b = ( +g ` D ) |
||
ldualvadd.w | |- ( ph -> W e. X ) |
||
ldualvadd.g | |- ( ph -> G e. F ) |
||
ldualvadd.h | |- ( ph -> H e. F ) |
||
Assertion | ldualvadd | |- ( ph -> ( G .+b H ) = ( G oF .+ H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvadd.f | |- F = ( LFnl ` W ) |
|
2 | ldualvadd.r | |- R = ( Scalar ` W ) |
|
3 | ldualvadd.a | |- .+ = ( +g ` R ) |
|
4 | ldualvadd.d | |- D = ( LDual ` W ) |
|
5 | ldualvadd.p | |- .+b = ( +g ` D ) |
|
6 | ldualvadd.w | |- ( ph -> W e. X ) |
|
7 | ldualvadd.g | |- ( ph -> G e. F ) |
|
8 | ldualvadd.h | |- ( ph -> H e. F ) |
|
9 | eqid | |- ( oF .+ |` ( F X. F ) ) = ( oF .+ |` ( F X. F ) ) |
|
10 | 1 2 3 4 5 6 9 | ldualfvadd | |- ( ph -> .+b = ( oF .+ |` ( F X. F ) ) ) |
11 | 10 | oveqd | |- ( ph -> ( G .+b H ) = ( G ( oF .+ |` ( F X. F ) ) H ) ) |
12 | 7 8 | ofmresval | |- ( ph -> ( G ( oF .+ |` ( F X. F ) ) H ) = ( G oF .+ H ) ) |
13 | 11 12 | eqtrd | |- ( ph -> ( G .+b H ) = ( G oF .+ H ) ) |