| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvadd.f |
|- F = ( LFnl ` W ) |
| 2 |
|
ldualvadd.r |
|- R = ( Scalar ` W ) |
| 3 |
|
ldualvadd.a |
|- .+ = ( +g ` R ) |
| 4 |
|
ldualvadd.d |
|- D = ( LDual ` W ) |
| 5 |
|
ldualvadd.p |
|- .+b = ( +g ` D ) |
| 6 |
|
ldualvadd.w |
|- ( ph -> W e. X ) |
| 7 |
|
ldualvadd.g |
|- ( ph -> G e. F ) |
| 8 |
|
ldualvadd.h |
|- ( ph -> H e. F ) |
| 9 |
|
eqid |
|- ( oF .+ |` ( F X. F ) ) = ( oF .+ |` ( F X. F ) ) |
| 10 |
1 2 3 4 5 6 9
|
ldualfvadd |
|- ( ph -> .+b = ( oF .+ |` ( F X. F ) ) ) |
| 11 |
10
|
oveqd |
|- ( ph -> ( G .+b H ) = ( G ( oF .+ |` ( F X. F ) ) H ) ) |
| 12 |
7 8
|
ofmresval |
|- ( ph -> ( G ( oF .+ |` ( F X. F ) ) H ) = ( G oF .+ H ) ) |
| 13 |
11 12
|
eqtrd |
|- ( ph -> ( G .+b H ) = ( G oF .+ H ) ) |