| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvadd.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 2 |
|
ldualvadd.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
ldualvadd.a |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
ldualvadd.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 5 |
|
ldualvadd.p |
⊢ ✚ = ( +g ‘ 𝐷 ) |
| 6 |
|
ldualvadd.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
| 7 |
|
ldualvadd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 8 |
|
ldualvadd.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
| 9 |
|
eqid |
⊢ ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) = ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) |
| 10 |
1 2 3 4 5 6 9
|
ldualfvadd |
⊢ ( 𝜑 → ✚ = ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) ) |
| 11 |
10
|
oveqd |
⊢ ( 𝜑 → ( 𝐺 ✚ 𝐻 ) = ( 𝐺 ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) 𝐻 ) ) |
| 12 |
7 8
|
ofmresval |
⊢ ( 𝜑 → ( 𝐺 ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) 𝐻 ) = ( 𝐺 ∘f + 𝐻 ) ) |
| 13 |
11 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ✚ 𝐻 ) = ( 𝐺 ∘f + 𝐻 ) ) |