Metamath Proof Explorer


Theorem ldualfvadd

Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvadd.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvadd.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvadd.a + = ( +g𝑅 )
ldualvadd.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvadd.p = ( +g𝐷 )
ldualvadd.w ( 𝜑𝑊𝑋 )
ldualfvadd.q = ( ∘f + ↾ ( 𝐹 × 𝐹 ) )
Assertion ldualfvadd ( 𝜑 = )

Proof

Step Hyp Ref Expression
1 ldualvadd.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvadd.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvadd.a + = ( +g𝑅 )
4 ldualvadd.d 𝐷 = ( LDual ‘ 𝑊 )
5 ldualvadd.p = ( +g𝐷 )
6 ldualvadd.w ( 𝜑𝑊𝑋 )
7 ldualfvadd.q = ( ∘f + ↾ ( 𝐹 × 𝐹 ) )
8 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 eqid ( oppr𝑅 ) = ( oppr𝑅 )
12 eqid ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) )
13 8 3 7 1 4 2 9 10 11 12 6 ldualset ( 𝜑𝐷 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) )
14 13 fveq2d ( 𝜑 → ( +g𝐷 ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) ) )
15 1 fvexi 𝐹 ∈ V
16 id ( 𝐹 ∈ V → 𝐹 ∈ V )
17 16 16 ofmresex ( 𝐹 ∈ V → ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) ∈ V )
18 15 17 ax-mp ( ∘f + ↾ ( 𝐹 × 𝐹 ) ) ∈ V
19 7 18 eqeltri ∈ V
20 eqid ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } )
21 20 lmodplusg ( ∈ V → = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) ) )
22 19 21 ax-mp = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( Scalar ‘ ndx ) , ( oppr𝑅 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝑅 ) , 𝑓𝐹 ↦ ( 𝑓f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ⟩ } ) )
23 14 5 22 3eqtr4g ( 𝜑 = )