Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvaddcl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvaddcl.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
3 |
|
ldualvaddcl.p |
⊢ + = ( +g ‘ 𝐷 ) |
4 |
|
ldualvaddcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
ldualvaddcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
6 |
|
ldualvaddcl.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
1 7 8 2 3 4 5 6
|
ldualvadd |
⊢ ( 𝜑 → ( 𝐺 + 𝐻 ) = ( 𝐺 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝐻 ) ) |
10 |
7 8 1 4 5 6
|
lfladdcl |
⊢ ( 𝜑 → ( 𝐺 ∘f ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝐻 ) ∈ 𝐹 ) |
11 |
9 10
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 + 𝐻 ) ∈ 𝐹 ) |