Metamath Proof Explorer


Theorem ldualvaddcl

Description: The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvaddcl.f
|- F = ( LFnl ` W )
ldualvaddcl.d
|- D = ( LDual ` W )
ldualvaddcl.p
|- .+ = ( +g ` D )
ldualvaddcl.w
|- ( ph -> W e. LMod )
ldualvaddcl.g
|- ( ph -> G e. F )
ldualvaddcl.h
|- ( ph -> H e. F )
Assertion ldualvaddcl
|- ( ph -> ( G .+ H ) e. F )

Proof

Step Hyp Ref Expression
1 ldualvaddcl.f
 |-  F = ( LFnl ` W )
2 ldualvaddcl.d
 |-  D = ( LDual ` W )
3 ldualvaddcl.p
 |-  .+ = ( +g ` D )
4 ldualvaddcl.w
 |-  ( ph -> W e. LMod )
5 ldualvaddcl.g
 |-  ( ph -> G e. F )
6 ldualvaddcl.h
 |-  ( ph -> H e. F )
7 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
8 eqid
 |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) )
9 1 7 8 2 3 4 5 6 ldualvadd
 |-  ( ph -> ( G .+ H ) = ( G oF ( +g ` ( Scalar ` W ) ) H ) )
10 7 8 1 4 5 6 lfladdcl
 |-  ( ph -> ( G oF ( +g ` ( Scalar ` W ) ) H ) e. F )
11 9 10 eqeltrd
 |-  ( ph -> ( G .+ H ) e. F )