Metamath Proof Explorer


Theorem ldualvaddval

Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses ldualvaddval.v
|- V = ( Base ` W )
ldualvaddval.r
|- R = ( Scalar ` W )
ldualvaddval.a
|- .+ = ( +g ` R )
ldualvaddval.f
|- F = ( LFnl ` W )
ldualvaddval.d
|- D = ( LDual ` W )
ldualvaddval.p
|- .+b = ( +g ` D )
ldualvaddval.w
|- ( ph -> W e. LMod )
ldualvaddval.g
|- ( ph -> G e. F )
ldualvaddval.h
|- ( ph -> H e. F )
ldualvaddval.x
|- ( ph -> X e. V )
Assertion ldualvaddval
|- ( ph -> ( ( G .+b H ) ` X ) = ( ( G ` X ) .+ ( H ` X ) ) )

Proof

Step Hyp Ref Expression
1 ldualvaddval.v
 |-  V = ( Base ` W )
2 ldualvaddval.r
 |-  R = ( Scalar ` W )
3 ldualvaddval.a
 |-  .+ = ( +g ` R )
4 ldualvaddval.f
 |-  F = ( LFnl ` W )
5 ldualvaddval.d
 |-  D = ( LDual ` W )
6 ldualvaddval.p
 |-  .+b = ( +g ` D )
7 ldualvaddval.w
 |-  ( ph -> W e. LMod )
8 ldualvaddval.g
 |-  ( ph -> G e. F )
9 ldualvaddval.h
 |-  ( ph -> H e. F )
10 ldualvaddval.x
 |-  ( ph -> X e. V )
11 4 2 3 5 6 7 8 9 ldualvadd
 |-  ( ph -> ( G .+b H ) = ( G oF .+ H ) )
12 11 fveq1d
 |-  ( ph -> ( ( G .+b H ) ` X ) = ( ( G oF .+ H ) ` X ) )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 2 13 1 4 lflf
 |-  ( ( W e. LMod /\ G e. F ) -> G : V --> ( Base ` R ) )
15 14 ffnd
 |-  ( ( W e. LMod /\ G e. F ) -> G Fn V )
16 7 8 15 syl2anc
 |-  ( ph -> G Fn V )
17 2 13 1 4 lflf
 |-  ( ( W e. LMod /\ H e. F ) -> H : V --> ( Base ` R ) )
18 17 ffnd
 |-  ( ( W e. LMod /\ H e. F ) -> H Fn V )
19 7 9 18 syl2anc
 |-  ( ph -> H Fn V )
20 1 fvexi
 |-  V e. _V
21 20 a1i
 |-  ( ph -> V e. _V )
22 inidm
 |-  ( V i^i V ) = V
23 eqidd
 |-  ( ( ph /\ X e. V ) -> ( G ` X ) = ( G ` X ) )
24 eqidd
 |-  ( ( ph /\ X e. V ) -> ( H ` X ) = ( H ` X ) )
25 16 19 21 21 22 23 24 ofval
 |-  ( ( ph /\ X e. V ) -> ( ( G oF .+ H ) ` X ) = ( ( G ` X ) .+ ( H ` X ) ) )
26 10 25 mpdan
 |-  ( ph -> ( ( G oF .+ H ) ` X ) = ( ( G ` X ) .+ ( H ` X ) ) )
27 12 26 eqtrd
 |-  ( ph -> ( ( G .+b H ) ` X ) = ( ( G ` X ) .+ ( H ` X ) ) )