| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualsca.f |
|- F = ( Scalar ` W ) |
| 2 |
|
ldualsca.o |
|- O = ( oppR ` F ) |
| 3 |
|
ldualsca.d |
|- D = ( LDual ` W ) |
| 4 |
|
ldualsca.r |
|- R = ( Scalar ` D ) |
| 5 |
|
ldualsca.w |
|- ( ph -> W e. X ) |
| 6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 7 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 8 |
|
eqid |
|- ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) = ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) |
| 9 |
|
eqid |
|- ( LFnl ` W ) = ( LFnl ` W ) |
| 10 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 11 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 12 |
|
eqid |
|- ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) = ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) |
| 13 |
6 7 8 9 3 1 10 11 2 12 5
|
ldualset |
|- ( ph -> D = ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( Scalar ` D ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
| 15 |
2
|
fvexi |
|- O e. _V |
| 16 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) = ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) |
| 17 |
16
|
lmodsca |
|- ( O e. _V -> O = ( Scalar ` ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) ) |
| 18 |
15 17
|
ax-mp |
|- O = ( Scalar ` ( { <. ( Base ` ndx ) , ( LFnl ` W ) >. , <. ( +g ` ndx ) , ( oF ( +g ` F ) |` ( ( LFnl ` W ) X. ( LFnl ` W ) ) ) >. , <. ( Scalar ` ndx ) , O >. } u. { <. ( .s ` ndx ) , ( k e. ( Base ` F ) , f e. ( LFnl ` W ) |-> ( f oF ( .r ` F ) ( ( Base ` W ) X. { k } ) ) ) >. } ) ) |
| 19 |
14 4 18
|
3eqtr4g |
|- ( ph -> R = O ) |