| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
ldualsca.o |
⊢ 𝑂 = ( oppr ‘ 𝐹 ) |
| 3 |
|
ldualsca.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 4 |
|
ldualsca.r |
⊢ 𝑅 = ( Scalar ‘ 𝐷 ) |
| 5 |
|
ldualsca.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 8 |
|
eqid |
⊢ ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) = ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) |
| 9 |
|
eqid |
⊢ ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 12 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) |
| 13 |
6 7 8 9 3 1 10 11 2 12 5
|
ldualset |
⊢ ( 𝜑 → 𝐷 = ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) ) |
| 15 |
2
|
fvexi |
⊢ 𝑂 ∈ V |
| 16 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) |
| 17 |
16
|
lmodsca |
⊢ ( 𝑂 ∈ V → 𝑂 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) ) |
| 18 |
15 17
|
ax-mp |
⊢ 𝑂 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( LFnl ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝐹 ) ↾ ( ( LFnl ‘ 𝑊 ) × ( LFnl ‘ 𝑊 ) ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑂 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ 𝐹 ) , 𝑓 ∈ ( LFnl ‘ 𝑊 ) ↦ ( 𝑓 ∘f ( .r ‘ 𝐹 ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) 〉 } ) ) |
| 19 |
14 4 18
|
3eqtr4g |
⊢ ( 𝜑 → 𝑅 = 𝑂 ) |