Metamath Proof Explorer


Theorem ldualsca

Description: The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualsca.f F = Scalar W
ldualsca.o O = opp r F
ldualsca.d D = LDual W
ldualsca.r R = Scalar D
ldualsca.w φ W X
Assertion ldualsca φ R = O

Proof

Step Hyp Ref Expression
1 ldualsca.f F = Scalar W
2 ldualsca.o O = opp r F
3 ldualsca.d D = LDual W
4 ldualsca.r R = Scalar D
5 ldualsca.w φ W X
6 eqid Base W = Base W
7 eqid + F = + F
8 eqid f + F LFnl W × LFnl W = f + F LFnl W × LFnl W
9 eqid LFnl W = LFnl W
10 eqid Base F = Base F
11 eqid F = F
12 eqid k Base F , f LFnl W f F f Base W × k = k Base F , f LFnl W f F f Base W × k
13 6 7 8 9 3 1 10 11 2 12 5 ldualset φ D = Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k
14 13 fveq2d φ Scalar D = Scalar Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k
15 2 fvexi O V
16 eqid Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k = Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k
17 16 lmodsca O V O = Scalar Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k
18 15 17 ax-mp O = Scalar Base ndx LFnl W + ndx f + F LFnl W × LFnl W Scalar ndx O ndx k Base F , f LFnl W f F f Base W × k
19 14 4 18 3eqtr4g φ R = O