Metamath Proof Explorer


Theorem ldualsbase

Description: Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldualsbase.f F = Scalar W
ldualsbase.l L = Base F
ldualsbase.d D = LDual W
ldualsbase.r R = Scalar D
ldualsbase.k K = Base R
ldualsbase.w φ W V
Assertion ldualsbase φ K = L

Proof

Step Hyp Ref Expression
1 ldualsbase.f F = Scalar W
2 ldualsbase.l L = Base F
3 ldualsbase.d D = LDual W
4 ldualsbase.r R = Scalar D
5 ldualsbase.k K = Base R
6 ldualsbase.w φ W V
7 eqid opp r F = opp r F
8 1 7 3 4 6 ldualsca φ R = opp r F
9 8 fveq2d φ Base R = Base opp r F
10 7 2 opprbas L = Base opp r F
11 9 5 10 3eqtr4g φ K = L