Metamath Proof Explorer


Theorem ldualsaddN

Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ldualsadd.f F = Scalar W
ldualsadd.q + ˙ = + F
ldualsadd.d D = LDual W
ldualsadd.r R = Scalar D
ldualsadd.p ˙ = + R
ldualsadd.w φ W V
Assertion ldualsaddN φ ˙ = + ˙

Proof

Step Hyp Ref Expression
1 ldualsadd.f F = Scalar W
2 ldualsadd.q + ˙ = + F
3 ldualsadd.d D = LDual W
4 ldualsadd.r R = Scalar D
5 ldualsadd.p ˙ = + R
6 ldualsadd.w φ W V
7 eqid opp r F = opp r F
8 1 7 3 4 6 ldualsca φ R = opp r F
9 8 fveq2d φ + R = + opp r F
10 7 2 oppradd + ˙ = + opp r F
11 9 5 10 3eqtr4g φ ˙ = + ˙