Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualsadd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
ldualsadd.q | ⊢ + = ( +g ‘ 𝐹 ) | ||
ldualsadd.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
ldualsadd.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | ||
ldualsadd.p | ⊢ ✚ = ( +g ‘ 𝑅 ) | ||
ldualsadd.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
Assertion | ldualsaddN | ⊢ ( 𝜑 → ✚ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualsadd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | ldualsadd.q | ⊢ + = ( +g ‘ 𝐹 ) | |
3 | ldualsadd.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
4 | ldualsadd.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | |
5 | ldualsadd.p | ⊢ ✚ = ( +g ‘ 𝑅 ) | |
6 | ldualsadd.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
7 | eqid | ⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) | |
8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝐹 ) ) |
9 | 8 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝐹 ) ) ) |
10 | 7 2 | oppradd | ⊢ + = ( +g ‘ ( oppr ‘ 𝐹 ) ) |
11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → ✚ = + ) |