Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldualsadd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| ldualsadd.q | ⊢ + = ( +g ‘ 𝐹 ) | ||
| ldualsadd.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
| ldualsadd.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | ||
| ldualsadd.p | ⊢ ✚ = ( +g ‘ 𝑅 ) | ||
| ldualsadd.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
| Assertion | ldualsaddN | ⊢ ( 𝜑 → ✚ = + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualsadd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | ldualsadd.q | ⊢ + = ( +g ‘ 𝐹 ) | |
| 3 | ldualsadd.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
| 4 | ldualsadd.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | |
| 5 | ldualsadd.p | ⊢ ✚ = ( +g ‘ 𝑅 ) | |
| 6 | ldualsadd.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
| 7 | eqid | ⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) | |
| 8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝐹 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝐹 ) ) ) |
| 10 | 7 2 | oppradd | ⊢ + = ( +g ‘ ( oppr ‘ 𝐹 ) ) |
| 11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → ✚ = + ) |