Metamath Proof Explorer


Theorem ldualsaddN

Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ldualsadd.f 𝐹 = ( Scalar ‘ 𝑊 )
ldualsadd.q + = ( +g𝐹 )
ldualsadd.d 𝐷 = ( LDual ‘ 𝑊 )
ldualsadd.r 𝑅 = ( Scalar ‘ 𝐷 )
ldualsadd.p = ( +g𝑅 )
ldualsadd.w ( 𝜑𝑊𝑉 )
Assertion ldualsaddN ( 𝜑 = + )

Proof

Step Hyp Ref Expression
1 ldualsadd.f 𝐹 = ( Scalar ‘ 𝑊 )
2 ldualsadd.q + = ( +g𝐹 )
3 ldualsadd.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldualsadd.r 𝑅 = ( Scalar ‘ 𝐷 )
5 ldualsadd.p = ( +g𝑅 )
6 ldualsadd.w ( 𝜑𝑊𝑉 )
7 eqid ( oppr𝐹 ) = ( oppr𝐹 )
8 1 7 3 4 6 ldualsca ( 𝜑𝑅 = ( oppr𝐹 ) )
9 8 fveq2d ( 𝜑 → ( +g𝑅 ) = ( +g ‘ ( oppr𝐹 ) ) )
10 7 2 oppradd + = ( +g ‘ ( oppr𝐹 ) )
11 9 5 10 3eqtr4g ( 𝜑 = + )