Step |
Hyp |
Ref |
Expression |
1 |
|
ldualsmul.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
ldualsmul.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
ldualsmul.t |
⊢ · = ( .r ‘ 𝐹 ) |
4 |
|
ldualsmul.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
ldualsmul.r |
⊢ 𝑅 = ( Scalar ‘ 𝐷 ) |
6 |
|
ldualsmul.m |
⊢ ∙ = ( .r ‘ 𝑅 ) |
7 |
|
ldualsmul.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
ldualsmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
|
ldualsmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
10 |
|
eqid |
⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) |
11 |
1 10 4 5 7
|
ldualsca |
⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝐹 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ ( oppr ‘ 𝐹 ) ) ) |
13 |
6 12
|
syl5eq |
⊢ ( 𝜑 → ∙ = ( .r ‘ ( oppr ‘ 𝐹 ) ) ) |
14 |
13
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝑌 ) = ( 𝑋 ( .r ‘ ( oppr ‘ 𝐹 ) ) 𝑌 ) ) |
15 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝐹 ) ) = ( .r ‘ ( oppr ‘ 𝐹 ) ) |
16 |
2 3 10 15
|
opprmul |
⊢ ( 𝑋 ( .r ‘ ( oppr ‘ 𝐹 ) ) 𝑌 ) = ( 𝑌 · 𝑋 ) |
17 |
14 16
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝑌 ) = ( 𝑌 · 𝑋 ) ) |